Skip to main content
Log in

Periodic solution of a pest management Gompertz model with impulsive state feedback control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a new model with two state impulses is proposed for pest management. According to different thresholds, an integrated strategy of pest management is considered, that is to say if the density of the pest population reaches the lower threshold \(h_1\) at which pests cause slight damage to the forest, biological control (releasing natural enemy) will be taken to control pests; while if the density of the pest population reaches the higher threshold \(h_2\) at which pests cause serious damage to the forest, both chemical control (spraying pesticide) and biological control (releasing natural enemy) will be taken at the same time. For the model, firstly, we qualitatively analyse its singularity. Then, we investigate the existence of periodic solution by successor functions and Poincaré-Bendixson theorem and the stability of periodic solution by the stability theorem for periodic solutions of impulsive differential equations. Lastly, we use numerical simulations to illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Bainov, D., Simeonov, P.S.: Systems with impulse effect: stability, theory, and applications. Ellis Horwood, Chichester (1989)

    MATH  Google Scholar 

  2. Bainov, D.D., Hristova, S.G., Hu, S., et al.: Periodic boundary value problems for systems of first order impulsive differential equations. Differ. Integral Equ. 2, 37–43 (1989)

    MATH  MathSciNet  Google Scholar 

  3. Bainov, D., Simeonov, P.S.: Impulsive differential equations: periodic solutions and applications. Longman, Harlow (1993)

    MATH  Google Scholar 

  4. Bale, J.S., Van Lenteren, J.C., Bigler, F.: Biological control and sustainable food production. Philos. Trans. R. Soc. B 363(1492), 761–776 (2008)

    Article  Google Scholar 

  5. Bonotto, E.M., Federson, M.: Topological conjugation and asymptotic stability in impulsive semidynamical systems. J. Math. Anal. Appl. 326(2), 869–881 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bonotto, E.M., Federson, M.: Limit sets and the Poincaré–Bendixson theorem in impulsive semidynamical systems. J. Differ. Equ. 244(9), 2334–2349 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bonotto, E.M.: LaSalle‘s theorems in impulsive semidynamical systems. Nonlinear Anal. 71(5), 2291–2297 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Erbe, L.H., Liu, X.: Existence of periodic solutions of impulsive differential systems. Int. J. Stoch. Anal. 4(2), 137–146 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Frigon, M., O’Regan, D.: Existence results for first-order impulsive differential equations. J. Math. Anal. Appl. 193(1), 96–113 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Canadian Forest Service. http://cfs.nrcan.gc.ca/home

  11. Dai, C., Zhao, M., Chen, L.: Homoclinic bifurcation in semi-continuous dynamic systems. Int. J. Biomath. 5(06), 1250059 (2012)

    Article  MathSciNet  Google Scholar 

  12. Focus On Forest Health, Alberta Environment and Alberta Sustainable Resource Development (2003)

  13. Gompertz, B.: On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 115, 513–583 (1825)

    Article  Google Scholar 

  14. Huang, M., Liu, S., Song, X., et al.: Periodic solutions and homoclinic bifurcation of a predator-Cprey system with two types of harvesting. Nonlinear Dyn. 64, 1–12 (2013)

    MathSciNet  Google Scholar 

  15. Hui, J., Zhu, D.: Dynamic complexities for prey-dependent consumption integrated pest management models with impulsive effects. Chaos Solitons Fractals 29(1), 233–251 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jiao, J., Chen, L., Cai, S.: Impulsive control strategy of a pest management SI model with nonlinear incidence rate. Appl. Math. Model. 33(1), 555–563 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of impulsive differential equations. World Scientific Publishing Company, Singapore (1989)

    Book  MATH  Google Scholar 

  18. Li, Z., Chen, L.: Periodic solution of a turbidostat model with impulsive state feedback control. Nonlinear Dyn. 58(3), 525–538 (2009)

    Article  MATH  Google Scholar 

  19. Li, Z., Chen, L., Huang, J.: Permanence and periodicity of a delayed ratio-dependent predator-prey model with Holling type functional response and stage structure. J. Comput. Appl. Math. 233(2), 173–187 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu, B., Zhang, Y., Chen, L.: Dynamic complexities of a Holling I predator Cprey model concerning periodic biological and chemical control. Chaos Solitons Fractals 22(1), 123–134 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu, B., Zhang, Y., Chen, L.: The dynamical behaviors of a Lotka-Volterra predator-prey model concerning integrated pest management. Nonlinear Anal. 6(2), 227–243 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu, B., Chen, L., Zhang, Y.: The dynamics of a prey-dependent consumption model concerning impulsive control strategy. Appl. Math. Comput. 169(1), 305–320 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mailleret, L., Grognard, F.: Global stability and optimisation of a general impulsive biological control model. Math. Biosci. 221(2), 91–100 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Meng, X., Jiao, J., Chen, L.: The dynamics of an age structured predator-prey model with disturbing pulse and time delays. Nonlinear Anal. 9(2), 547–561 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Meng, X., Chen, L.: Permanence and global stability in an impulsive Lotka-Volterra N-species competitive system with both discrete delays and continuous delays. Int. J. Biomath. 1(02), 179–196 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Nieto, J.J.: Basic theory for nonresonance impulsive periodic problems of first order. J. Math. Anal. Appl. 205(2), 423–433 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nieto, J.J., O’Regan, D.: Variational approach to impulsive differential equations. Nonlinear Anal. 10(2), 680–690 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nie, L., Teng, Z., Hu, L., et al.: Existence and stability of periodic solution of a predator-prey model with state-dependent impulsive effects. Math. Comput. Simul. 79(7), 2122–2134 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nie, L., Peng, J., Teng, Z., et al.: Existence and stability of periodic solution of a Lotka-Volterra predator-prey model with state dependent impulsive effects. J. Comput. Appl. Math. 224(2), 544–555 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Nie, L., Teng, Z., Hu, L., et al.: Qualitative analysis of a modified Leslie-Gower and Holling-type II predator-prey model with state dependent impulsive effects. Nonlinear Anal. 11(3), 1364–1373 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Science Features: Forest Pests: Boring a Hole in Your Wallet, www.nature.org/ourscience/sciencefeatures/

  32. Shi, R., Jiang, X., Chen, L.: A predator-prey model with disease in the prey and two impulses for integrated pest management. Appl. Math. Model. 33(5), 2248–2256 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Shi, R., Chen, L.: The study of a ratio-dependent predator-prey model with stage structure in the prey. Nonlinear Dyn. 58(1–2), 443–451 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Song, X., Hao, M., Meng, X.: A stage-structured predator-prey model with disturbing pulse and time delays. Appl. Math. Model. 33(1), 211–223 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sun, S., Chen, L.: Mathematical modelling to control a pest population by infected pests. Appl. Math. Model. 33(6), 2864–2873 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tang, S., Cheke, R.A.: State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. J. Math. Biol. 50(3), 257–292 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Trzcinski, M.K., Reid, M.L.: Intrinsic and extrinsic determinants of mountain pine beetle population growth. Agric. For. Entomol. 11(2), 185–196 (2009)

    Article  Google Scholar 

  38. Zeng, G., Chen, L., Sun, L.: Existence of periodic solution of order one of planar impulsive autonomous system. J. Comput. Appl. Math. 186(2), 466–481 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  39. Zhang, T., Meng, X., Song, Y.: The dynamics of a high-dimensional delayed pest management model with impulsive pesticide input and harvesting prey at different fixed moments. Nonlinear Dyn. 64(1), 1–12 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  40. Zhang, T., Meng, X., Song, Y., et al.: Dynamical analysis of delayed plant disease models with continuous or impulsive cultural control strategies. Abstract and applied analysis. Hindawi Publishing Corporation, New York (2012)

  41. Zhang, H., Chen, L., Nieto, J.J.: A delayed epidemic model with stage-structure and pulses for pest management strategy. Nonlinear Anal. 9(4), 1714–1726 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  42. Zhang, H., Georgescu, P., Chen, L.: An impulsive predator-prey system with Beddington–Deangelis functional response and time delay. Int. J. Biomath. 1(01), 1–17 (2008)

  43. Zhao, L., Chen, L., Zhang, Q.: The geometrical analysis of a Predator-prey model with two state impulses. Math. Biosci. 238, 55–64 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  44. Zhao, W., Zhang, T., Meng, X., Yang, Y.: Dynamical analysis of a pest management model with saturated growth rate and state dependent impulsive effects. Abstract and applied analysis. Hindawi Publishing Corporation, New York (2013)

    Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous referees for their valuable comments and suggestions. The research has been supported by National Natural Science Foundation of China (Grant No. 11371230), Natural Sciences Fund of Shandong Province (Grant No. ZR2012AM012) and A Project for Higher Educational Science and Technology Program of Shandong Province (Grant No. J13LI05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongqian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Meng, X., Liu, R. et al. Periodic solution of a pest management Gompertz model with impulsive state feedback control. Nonlinear Dyn 78, 921–938 (2014). https://doi.org/10.1007/s11071-014-1486-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1486-y

Keywords

Navigation