Skip to main content
Log in

Cluster synchronization in nonlinear complex networks under sliding mode control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the cluster synchronization for network of nonlinear systems via differential mean value theorem method and sliding mode control strategy. Because of the existence of the nonlinear dynamics, the differential mean value theorem method is used to transform the nonlinear error complex network system into a linear parameter-varying system. Since the robustness to the uncertainties of the sliding mode, we can deal with the linear parameter-varying system which contains the time-varying mismatched uncertainties by applying the sliding mode control strategy through the equivalent transformation. In addition, appropriate linear matrix inequality stability condition by the Lyapunov method is derived such that each subsystem in the new sliding mode is completely invariant to both matched and mismatched uncertainties. Finally, simulation example is shown to illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Huberman, B.A., Adamic, L.A.: Internet: growth dynamics of the world-wide web. Nature 401, 131–131 (1999)

    Google Scholar 

  2. Bolognani, S., Zampieri, S.: A distributed control strategy for reactive power compensation in smart microgrids. IEEE Trans. Autom. Control 58, 2818–2833 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bullmore, E., Sporns, O.: The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012)

    Google Scholar 

  4. Xia, W., Cao, M.: Clustering in diffusively coupled networks. Automatica 47, 2395–2405 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Qin, J., Gao, H., Zheng, W.: Exponential synchronization of complex networks of linear system and nonlinear oscillators: a unified analysis. IEEE Trans. Neural Netw. Learn. Syst. (2014). doi:10.1109/TNNLS.2014.2316245

  6. Li, J., Zhang, Q., Yu, H.: Real-time guaranteed cost control of MIMO networked control systems with packet disordering. J. Process Control 21, 967–975 (2011)

    Article  Google Scholar 

  7. Maurizio, P., Mario, D.B.: Criteria for global pinning-controllability of complex networks. Automatica 44, 3100–3106 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cao, Y., Ren, W.: Finite-time consensus for multi-agent networks with unknown inherent nonlinear dynamics. Automatica 50, 2648–2656 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kurths, J., Moreno, Y., Zhou, C., Arenas, A., Guilera, A.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008)

    Article  MathSciNet  Google Scholar 

  10. Tang, Y., Qian, F., Gao, H., Kurths, J.: Synchronization in Complex networks and its application—a survey of recent advances and challenges. Ann. Rev. Control (2014). doi:10.1016/j.arcontrol.2014.09.003

  11. Lü, L., Li, C., Wang, W., Sun, Y., Wang, Y., Sun, A.: Study on spatiotemporal chaos synchronization among complex networks with diverse structures. Nonlinear Dyn. 77, 145–151 (2014)

    Article  MathSciNet  Google Scholar 

  12. Lü, L., Li, Y., Fan, X., Lv, N.: Outer synchronization between uncertain complex networks based on backstepping design. Nonlinear Dyn. 73, 767–773 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wu, Z., Fu, X.: Complex projective synchronization in drive-response networks coupled with complex-variable chaotic systems. Nonlinear Dyn. 72, 9–15 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Shi, H., Sun, Y., Miao, L.: Generation of lag outer synchronization of complex networks with noise coupling. Nonlinear Dyn. 79, 1131–1140 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sun, Y., Shi, H., Emmanuel, A., Meng, Q.: Noise-induced outer synchronization between two different complex dynamical networks. Nonlinear Dyn. 76, 519–528 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. Uhlhaas, P., Singer, W.: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52, 155–168 (2006)

    Article  Google Scholar 

  17. Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 109, 064101 (2012)

    Article  Google Scholar 

  18. Su, H., Wang, X.: Pinning Control of Complex Networked systems. Springer, New York (2012)

    MATH  Google Scholar 

  19. Lu, R., Yu, W., Lü, J., Xu, A.: Synchronization on complex networks of networks. IEEE Trans. Neural Netw. Learn. Syst. 25, 2110–2118 (2014)

    Article  Google Scholar 

  20. Tsai, Y., Huynh, V., Lee, C., Kuo, K.: AETA 2013: Recent Advances in Electrical Engineering and Related Sciences. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  21. Katalin, M., Gabor, S.: A model structure-driven hierarchical decentralized stabilizing control structure for process networks. J. Process Control 24, 1358–1370 (2014)

    Article  Google Scholar 

  22. Johannes, S., Romeo, O., Alessandro, A., Jorg, R., Tevfik, S.: Conditions for stability of droop-controlled inverter-based microgrids. Automatica 50, 2457–2469 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Edwards, C., Spurgeon, S.K.: Sliding Mode Control: Theory and Applications. Taylor and Francis Ltd, London (1998)

    MATH  Google Scholar 

  24. Ahmad, T.A., Zhu, Q.: Advances and Applications in Sliding Mode Control Systems. Springer, Berlin (2015)

    MATH  Google Scholar 

  25. Lee, H., Utkin, V.I.: Chattering suppression methods in sliding mode control systems. Ann. Rev. Control 31, 179–188 (2007)

    Article  Google Scholar 

  26. Chan, M., Tao, C., Lee, T.: Sliding mode controller for linear systems with mismatched time-varying uncertainties. J. Franklin Inst. 337, 105–115 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mohd, A., Ho, P.: Adaptive sliding mode control with neural network based hybrid models. J. Process Control 2, 157–176 (2004)

    Google Scholar 

  28. Ali, Z., Mohamed, B.: A unified \(H_{\infty }\) adaptive observer synthesis method for a class of systems with both Lipschitz and monotone nonlinearities. Syst. Control Lett. 58, 282–288 (2009)

    Article  MATH  Google Scholar 

  29. Lu, Y., Huang, B.: Robust multiple-model LPV approach to nonlinear process identification using mixture \(t\) distributions. J. Process Control 24, 1472–1488 (2014)

    Article  Google Scholar 

  30. Glaria, T., Sbarbaro, D., Johansen, T.: Observer design for linear processes model with implicit nonlinear output map. J. Process Control 22, 1647–1654 (2010)

    Article  Google Scholar 

  31. Jin, X., Huang, B., David, S.S.: Multiple model LPV approach to nonlinear process identification with EM algorithm. J. Process Control 21, 182–193 (2011)

    Article  Google Scholar 

  32. Yu, C., Qin, J., Gao, H.: Cluster synchronization in directed networks of partial-state coupled linear systems under pinning control. Automatica 50, 2341–2349 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ali, Z., Mohamed, B., Bara, G.I.: Observer design for nonlinear systems: an approach based on the differential mean value theorem. In: Proceedings of the 44th IEEE conference on decision and control and the European control conference (2005)

  34. Boukas, E.: Control of Singular Systems with Random Abrupt Changes. Springer, Berlin, Heidelberg (2008)

    MATH  Google Scholar 

  35. Ma, J., Qin, H., Song, X., Chu, R.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29, 1450239 (2015)

    Article  Google Scholar 

  36. Qin, H., Ma, J., Jin, W., Wang, C.: Dynamics of electric activities in neuron and neurons of network induced by autapses. Sci. China Technol. Sci. 57, 936–946 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingling Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, H., Zhang, Q. & Zheng, M. Cluster synchronization in nonlinear complex networks under sliding mode control. Nonlinear Dyn 83, 739–749 (2016). https://doi.org/10.1007/s11071-015-2363-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2363-z

Keywords

Navigation