Skip to main content
Log in

The L2-convergence of the Legendre spectral Tau matrix formulation for nonlinear fractional integro differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The operational Tau method, a well known method for solving functional equations is employed to approximate the solution of nonlinear fractional integro-differential equations. The fractional derivatives are described in the Caputo sense. The unique solvability of the linear Tau algebraic system is discussed. In addition, we provide a rigorous convergence analysis for the Legendre Tau method which indicate that the proposed method converges exponentially provided that the data in the given FIDE are smooth. To do so, Sobolev inequality with some properties of Banach algebras are considered. Some numerical results are given to clarify the efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hosseini, S.M.: The adaptive operational Tau method for system of ODE’s. J. Comput. Appl. Math. 231, 24–38 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Tang, T., Xu, X., Cheng, J.: Tao Tang, Xiang Xu and Jin Cheng on spectral methods for Volterra type integral equations and the convergence analysis. J. Comput. Math. 26, 825–837 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Arikoglu, A., Ozkol, I.: Solution of fractional integro-differential equations by using fractional differential transfom method. Chaos, Solitons Fractals 40, 521–529 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Momani, S., Noor, M.A.: Numerical methods for fourth-order fractional integro-differential equations. Appl. Math. Comput. 182, 754–760 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rawashdeh, E.A.: Numerical solution of fractional integro-differential equations by collocation method. Appl. Math. Comput. 176, 1–6 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Momani, S., Qaralleh, R.: An efficient method for solving systems of fractional integro-differential equations. Comput. Math. Appl. 52, 459–470 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hosseini, S.M., Shahmorad, S.: Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases. Appl. Math. Model. 27, 145–154 (2003)

    Article  MATH  Google Scholar 

  8. Hosseini, S.M., Shahmorad, S.: Numerical solution of a class of integro-differential equations by the Tau method with an error estimation. Appl. Math. Comput. 136, 559–570 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  10. Podlubny, I.: Fractional Differential Equations. Academic, New York (1999)

    MATH  Google Scholar 

  11. Kilbas, A.A., Srivastave, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amesterdam (2006)

    MATH  Google Scholar 

  12. Ortiz, E.L., Samara, H.: An operational approach to the Tau method for the numerical solution of nonlinear differential equations. Computing 27, 15–25 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ortiz, E.L., Samara, H.: Numerical solution of differential eigenvalue problems with an operational approach to the Tau method. Computing 31, 95–103 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ortiz, E.L., Samara, H.: Numerical solution of partial differential equations with variable coefficients with an operational approach to the Tau method. Comput. Math. Appl. 10, 5–13 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. El-Daou, M.K., Ortiz, E.L.: The weighted subspace of the Tau method and orthogonal collocation. J. Math. Anal. Appl. 326, 622–631 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ghoreishi, F., Hadizadeh, M.: Numerical computation of the Tau approximation for the Volterra–Hammerstein integral equations. Numer. Algorithms 52, 541–559 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bollobas, B.: Linear Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  18. Bonsall, F.F., Duncan, J.: Complete Normed Algebras. Springer, New York (1973)

    MATH  Google Scholar 

  19. Mosak, R.D.: Banach Algebras, Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1975)

    Google Scholar 

  20. Ghoreishi, F., Yazdani, S.: An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis. Comput. Math. Appl. 61, 30–43 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farideh Ghoreishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokhtary, P., Ghoreishi, F. The L2-convergence of the Legendre spectral Tau matrix formulation for nonlinear fractional integro differential equations. Numer Algor 58, 475–496 (2011). https://doi.org/10.1007/s11075-011-9465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-011-9465-6

Keywords

Navigation