Skip to main content
Log in

An improved Newton projection method for nonnegative deblurring of Poisson-corrupted images with Tikhonov regularization

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper a quasi-Newton projection method for image deblurring is presented. The image restoration problem is mathematically formulated as a nonnegatively constrained minimization problem where the objective function is the sum of the Kullback–Leibler divergence, used to express fidelity to the data in the presence of Poisson noise, and of a Tikhonov regularization term. The Hessian of the objective function is approximated so that the Newton system can be efficiently solved by using Fast Fourier Transforms. The numerical results show the potential of the proposed method both in terms of relative error reduction and computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anconelli, B., Bertero, M., Boccacci, P., Carbillet, M., Lanteri, H.: Iterative methods for the reconstruction of astronomical images with high dynamic range. J. Comput. Appl. Math. 198, 321–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardsley, J., N’djekornom, L.: Tikhonov regularized poisson likelihood estimation: theoretical justification and a computational method. Inverse Probl. Sci. Eng. 16(2), 199–215 (2008)

    Article  MathSciNet  Google Scholar 

  3. Bardsley, J., N’djekornom, L.: An analysis of regularization by diffusion for ill-posed poisson likelihood estimation. Inverse Probl. Sci. Eng. 17(4), 537–550 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bardsley, J.M., Vogel, C.R.: A nonnegatively constrained convex programming method for image reconstruction. SIAM J. Sci. Comput. 25, 1326–1343 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertsekas, D.: Constrained Optimization and Lagrange Multiplier Methods. Academic, New York (1982)

    MATH  Google Scholar 

  6. Bertsekas, D.: Projected Newton methods for optimization problem with simple constraints. SIAM J. Control Optim. 20(2), 221–245 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsekas, D.: Nonlinear Programming, 2nd ed. Athena Scientific, Belmont, Massachusetts (1999)

  8. Conchello, J.A., McNally, J.G.: Fast regularization technique for expectation maximization algorithm for optical sectioning microscopy. Proc. SPIE 2655, 199–208 (1996)

    Article  Google Scholar 

  9. Gafni, E.M., Bertsekas, D.P.: Two-metric projection methods for constrained optimization. SIAM J. Control. Optim. 22, 936–964 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Green, P.J.: Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imag. 9, 84–93 (1990)

    Article  Google Scholar 

  11. Hanke, M., Nagy, J.G., Vogel, C.: Quasi Newton approach to nonnegative image restorations. Linear Algebra Appl. 316, 222–333 (2000)

    Article  MathSciNet  Google Scholar 

  12. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring images: matrices, spectra and filtering. SIAM, Philadelphia (2006)

    MATH  Google Scholar 

  13. Kelley, C.T.: Iterative Methods for Optimization. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  14. Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numer. Algorithms 48, 279–300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lant’eri, H., Roche, M., Aime, C.: Penalized maximum likelihood image restoration with positivity constraints: multiplicative algorithms. Inverse Probl. 18, 1397–1419 (2002)

    Article  MathSciNet  Google Scholar 

  16. Bertero, M, Boccacci, P., Desiderà, G., Vicidomini, G.: Image deblurring with Poisson data: from cells to galaxies. Inverse Probl. 25, 123006 (2009)

    Article  Google Scholar 

  17. Lanteri, H., Bertero, M., Zanni, L.: Iterative image reconstruction: a point of view. In: Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT) (CRM Series, vol. 7), pp. 37–63 (2008)

  18. Markham, J., Conchello, J.A.: Fast maximum-likelihood image-restoration algorithms for threedimensional fluorescence microscopy. J. Opt. Soc. Am. A 18, 1062–1071 (2001).

    Article  Google Scholar 

  19. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  20. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imag. 1, 113–122 (1982)

    Article  Google Scholar 

  21. Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  22. Vogel, C.R., Oman, M.E.: Fast, robust total variation–based reconstruction of noisy, blurred images. IEEE Trans. Image Process. 7, 813–824 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? IEEE Signal Process. Mag. 98, 98–117 (2009)

    Article  Google Scholar 

  24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germana Landi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landi, G., Loli Piccolomini, E. An improved Newton projection method for nonnegative deblurring of Poisson-corrupted images with Tikhonov regularization. Numer Algor 60, 169–188 (2012). https://doi.org/10.1007/s11075-011-9517-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-011-9517-y

Keywords

Navigation