Skip to main content
Log in

Old and new parameter choice rules for discrete ill-posed problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Linear discrete ill-posed problems are difficult to solve numerically because their solution is very sensitive to perturbations, which may stem from errors in the data and from round-off errors introduced during the solution process. The computation of a meaningful approximate solution requires that the given problem be replaced by a nearby problem that is less sensitive to disturbances. This replacement is known as regularization. A regularization parameter determines how much the regularized problem differs from the original one. The proper choice of this parameter is important for the quality of the computed solution. This paper studies the performance of known and new approaches to choosing a suitable value of the regularization parameter for the truncated singular value decomposition method and for the LSQR iterative Krylov subspace method in the situation when no accurate estimate of the norm of the error in the data is available. The regularization parameter choice rules considered include several L-curve methods, Regińska’s method and a modification thereof, extrapolation methods, the quasi-optimality criterion, rules designed for use with LSQR, as well as hybrid methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakushinskii, A.B.: Remarks on choosing a regularization parameter using quasi-optimality and ratio criterion. USSR Comp. Math. Math. Phys. 24(4), 181–182 (1984)

    Article  MathSciNet  Google Scholar 

  2. Bauer, F., Kindermann, S.: Recent results on the quasi-optimality principle. J. Inverse Ill-Posed Probl. 17, 5–18 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauer, F., Lukas, M.A.: Comparing parameter choice methods for regularization of ill-posed problem. Math. Comput. Simul. 81, 1795–1841 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauer, F., Reiß, M.: Regularization independent of the noise-level: an analysis of quasi-optimality. Inverse Probl. 24, 055009 (16 pp) (2008)

    Google Scholar 

  5. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  6. Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for linear systems with applications to regularization. Numer. Algorithms 49, 85–104 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for the regularization of least squares problems. Numer. Algorithms 51, 61–76 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calvetti, D., Golub, G.H., Reichel, L.: Estimation of the L-curve via Lanczos bidiagonalization. BIT 39, 603–619 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calvetti, D., Hansen, P.C., Reichel, L.: L-curve curvature bounds via Lanczos bidiagonalization. Electron. Trans. Numer. Anal. 14, 20–35 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Calvetti, D., Lewis, B., Reichel, L.: GMRES, L-curves, and discrete ill-posed problems. BIT 42, 44–65 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Calvetti, D., Reichel, L.: Tikhonov regularization of large linear problems. BIT 43, 263–283 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Castellanos, J.L., Gómez, S., Guerra, V.: The triangle method for finding the corner of the L-curve. Appl. Numer. Math. 43, 359–373 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Donatelli, M.: Fast transforms for high order boundary conditions in deconvolution problems. BIT 50, 559–576 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eldén, L.: A weighted pseudoinverse, generalized singular values, and constrained least squares problems. BIT 22, 487–501 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  16. Golub, G.H., Meurant, G.: Matrices, moments and quadrature. In: Griffiths, D.F., Watson, G. A. (eds.) Numerical Analysis 1993, pp. 105–156. Longman, Essex (1994)

    Google Scholar 

  17. Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  18. Golub, G.H., von Matt, U.: Tikhonov regularization for large scale problems. In: Golub, G.H., Lui, S.H., Luk, F., Plemmons, R. (eds.) Workshop on Scientific Computing, pp. 3–26. Springer, New York (1997)

    Google Scholar 

  19. Golub, G.H., von Matt, U.: Generalized cross-validation for large scale problems. J. Comput. Graph. Stat. 6, 1–34 (1997)

    Google Scholar 

  20. Hanke, M.: Conjugate Gradient Type Methods for Ill-Posed Problems. Longman, Essex (1995)

    MATH  Google Scholar 

  21. Hanke, M.: Limitations of the L-curve method in ill-posed problems. BIT 36, 287–301 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hanke, M., Hansen, P.C.: Regularization methods for large-scale problems. Surv. Math. Ind. 3, 253–315 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Hansen, P.C.: Regularization, GSVD and truncated GSVD. BIT 29, 491–504 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hansen, P.C.: Analysis of the discrete ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  26. Hansen, P.C.: Regularization tools version 4.0 for Matlab 7.3. Numer. Algorithms 46, 189–194 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hansen, P.C., Jensen, T.K., Rodriguez, G.: An adaptive pruning algorithm for the discrete L-curve criterion. J. Comput. Appl. Math. 198, 483–492 (2006)

    Article  MathSciNet  Google Scholar 

  28. Hansen, P.C., O’Leary, D.P.: The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14, 1487–1503 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hämarik, U., Palm, R., Raus, T.: A family of rules for parameter choice in Tikhonov regularization of ill-posed problems with inexact noise level. J. Comput. Appl. Math. 236, 2146–2157 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hnětynková, I., Plešinger, M., Strakoš, Z.: The regularizing effect of the Golub-Kahan iterative bidiagonalization and revealing the noise level in the data. BIT 49, 669–696 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kindermann, S.: Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems. Electron. Trans. Numer. Anal. 38, 233–257 (2011)

    MathSciNet  Google Scholar 

  32. Lukas, M.A.: Robust generalized cross-validation for choosing the regularization parameter. Inverse Probl. 22, 1883–1902 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Morigi, S., Reichel, L., Sgallari, F., Zama, F.: Iterative methods for ill-posed problems and semiconvergent sequences. J. Comput. Appl. Math. 193, 157–167 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Neuman, A., Reichel, L., Sadok, H.: Implementations of range restricted iterative methods for linear discrete ill-posed problems. Linear Algebra Appl. 436, 3974–3990 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Neuman, A., Reichel, L., Sadok, H.: Algorithms for range restricted iterative methods for linear discrete ill-posed problems. Numer. Algorithms 59, 325–331 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. Trans. Math. Software 8, 43–71 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  37. Phillips, D.L.: A technique for the numerical solution of certain integral equations of the first kind. J. ACM 9, 84–97 (1962)

    Article  MATH  Google Scholar 

  38. Reichel, L., Rodriguez, G., Seatzu, S.: Error estimates for large-scale ill-posed problems. Numer. Algorithms 51, 341–361 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Reichel, L., Sadok, H.: A new L-curve for ill-posed problems. J. Comput. Appl. Math. 219, 493–508 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Reichel, L., Ye, Q.: Simple square smoothing regularization operators. Electron. Trans. Numer. Anal. 33, 63–83 (2009)

    MathSciNet  Google Scholar 

  41. Regińska, T.: A regularization parameter in discrete ill-posed problems. SIAM J. Sci. Comput. 17, 740–749 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shaw, Jr., C.B.: Improvements of the resolution of an instrument by numerical solution of an integral equation. J. Math. Anal. Appl. 37, 83–112 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tikhonov, A., Arsenin, V.: Solutions of Ill-Posed Problems. Wiley, New York (1977)

    MATH  Google Scholar 

  44. Vogel, C.R.: Non-convergence of the L-curve regularization parameter selection method. Inverse Probl. 12, 535–547 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Rodriguez.

Additional information

Dedicated to Claude Brezinski and Sebastiano Seatzu on the occasion of their 70th birthdays.

Research of L. Reichel was supported in part by NSF grant DMS-1115385 while research of G. Rodriguez was supported in part by MIUR-PRIN grant no. 20083KLJEZ-003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichel, L., Rodriguez, G. Old and new parameter choice rules for discrete ill-posed problems. Numer Algor 63, 65–87 (2013). https://doi.org/10.1007/s11075-012-9612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9612-8

Keywords

Navigation