Skip to main content
Log in

Green Function Estimates and Harnack Inequality for Subordinate Brownian Motions

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let X be a Lévy process in\(\mathbb{R}^{d} \), \(d \geqslant 3\), obtained by subordinating Brownian motion with a subordinator with a positive drift. Such a process has the same law as the sum of an independent Brownian motion and a Lévy process with no continuous component. We study the asymptotic behavior of the Green function of X near zero. Under the assumption that the Laplace exponent of the subordinator is a complete Bernstein function we also describe the asymptotic behavior of the Green function at infinity. With an additional assumption on the Lévy measure of the subordinator we prove that the Harnack inequality is valid for the nonnegative harmonic functions of X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow, M.T.: Diffusions on fractals, in Lecture Notes on probability theory and Statistics, École d’ Été de Probabilités de Saint-Flour XXV – 1995, Lect. Notes Math. 1690, Springer, 1998, pp. 1–121.

  2. Bass, R.F. and Kassmann, M.: ‘Harnack inequalities for non-local operators of variable order’, Trans. Amer. Math. Soc. 357 (2005), 837–850.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bass, R.F. and Levin, D.A.: ‘Harnack inequalities for jump processes’, Potential Anal. 17 (2002), 375–388.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bass, R.F. and Levin, D.A.: ‘Transition probabilities for symmetric jump processes’, Trans. Amer. Math. Soc. 354 (2002), 2933–2953.

    Article  MathSciNet  MATH  Google Scholar 

  5. Berg C. and Forst, G.: Potential Theory on Locally Compact Abelian Groups, Springer, Berlin, 1975.

    MATH  Google Scholar 

  6. Bertoin, J.: Lévy Processes, Cambridge University Press, Cambridge, 1996.

  7. Bingham, N.H., Goldie, C.M. and Teugels, J.L.: Regular Variation, Cambridge University Press, Cambridge, 1987.

    MATH  Google Scholar 

  8. Bogdan, K., Stós, A. and Sztonyk, P.: ‘Potential theory for Lévy stable processes’, Bull. Pol. Acad. Sci., Math. 50 (2002), 361–372.

    MATH  Google Scholar 

  9. Chen, Z.-Q. and Kumagai, T.: ‘Heat kernel estimates for stable-like processes on d-sets’, Stoch. Process. Appl. 108 (2003), 27–62.

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Z.-Q. and Song, R.: ‘Drift transform and Green function estimates for discontinuous processes’, J. Funct. Anal. 201 (2003), 262–281.

    Article  MathSciNet  MATH  Google Scholar 

  11. Davies, E.B.: Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989.

    MATH  Google Scholar 

  12. Geman, H., Madan, D.B. and Yor, M.: ‘Time changes for Lévy processes’, Math. Finance 11 (2001), 79–96.

    Article  MathSciNet  MATH  Google Scholar 

  13. Jacob, N.: Pseudo Differential Operators and Markov Processes, Vol. 1, Imperial College Press, London, 2001.

    Google Scholar 

  14. Jacob, N. and Schilling, R.L.: ‘Some Dirichlet spaces obtained by subordinate reflected diffusions’, Rev. Mat. Iberoamericana 15 (1999), 59–91.

    MathSciNet  MATH  Google Scholar 

  15. Krylov, N.V. and Safonov, M.V.: ‘An estimate of the probability that a diffusion process hits a set of positive measure’, Sov. Math. Dokl. 20 (1979), 253–255.

    MATH  Google Scholar 

  16. Kumagai, T.: Some remarks for stable-like jump processes on fractals, in P. Grabner and W. Woess (eds), Trends in Math., Fractals in Graz 2001, Birkhäuser, Basel, 2002, pp. 185–196.

    Google Scholar 

  17. Riesz, M.: ‘Integrals de Riemann–Liouville et potentiels’, Acta Szeged 9 (1938), 1–42.

    MATH  Google Scholar 

  18. Ryznar, M.: ‘Estimates of Green functions for relativistic α-stable process’, Potential Anal. 17 (2002), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  19. Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  20. Schilling, R.L.: Zum Pfadenverhalten vom Markovschen Prozessen, die mit Lévy–Prozessen vergleichbar sind, Dissertation Universität Erlangen–Nürnberg, Erlangen, 1994.

    Google Scholar 

  21. Selmi, M.: ‘Comparison des semi-groupes et des résolvantes d’ordre α associés à des opérateurs différentiels de type divergence’, Potential Anal. 3 (1994), 15–45.

    Article  MathSciNet  MATH  Google Scholar 

  22. Song, R.: ‘Sharp bounds on the density, Green function and jumping function of subordinate killed BM’, Probab. Theory Related Fields 128 (2004), 606–628.

    Article  MathSciNet  MATH  Google Scholar 

  23. Song, R. and Vondraček, Z.: ‘Potential theory of subordinate killed Brownian motion in a domain’, Probab. Theory Related Fields 125 (2003), 578–592.

    Article  MathSciNet  MATH  Google Scholar 

  24. Song, R. and Vondraček, Z.: ‘Harnack inequalities for some classes of Markov processes’, Math. Z. 246 (2004), 177–202.

    Article  MathSciNet  MATH  Google Scholar 

  25. Song, R. and Vondraček, Z.: ‘Harnack inequality for some discontinuous Markov processes with a diffusion part, Glas. Mat. 40 (2005), 177–187.

    Article  MATH  Google Scholar 

  26. Stós, A.: ‘Symmetric α-stable processes on d-sets’, Bull. Pol. Acad. Sci. Math. 48 (2000), 237–245.

    MATH  Google Scholar 

  27. Vondraček, Z.: ‘Basic potential theory of certain nonsymmetric strictly α-stable processes’, Glas. Mat. 37 (2002), 193–215.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murali Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, M., Song, R. & Vondraček, Z. Green Function Estimates and Harnack Inequality for Subordinate Brownian Motions. Potential Anal 25, 1–27 (2006). https://doi.org/10.1007/s11118-005-9003-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-005-9003-z

Key words

Mathematics Subject Classifications (2000)

Navigation