Skip to main content
Log in

The Dirichlet Energy Integral and Variable Exponent Sobolev Spaces with Zero Boundary Values

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We define and study variable exponent Sobolev spaces with zero boundary values. This allows us to prove that the Dirichlet energy integral has a minimizer in the variable exponent case. Our results are based on a Poincaré-type inequality, which we prove under a certain local jump condition for the variable exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Springer, Berlin Heidelberg New York (1996)

    MATH  Google Scholar 

  2. Acerbi, E., Mingione, G.: Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156, 121–140 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alkhutov, Yu. A.: The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with nonstandard growth condition (Russian). Differ. Uravn. 33(12), 1651–1660, 1726 (1997); translation in Diff. Equ. 33(12), 1653–1663 (1997)

  4. Alkhutov, Yu. A.: On the Hölder continuity of \(p(x)\)-harmonic functions, (Russian). Mat. Sb. 196(2), 3–28 (2005); translation in Sb. Math. 196(1–2), 147–171 (2005)

    MATH  MathSciNet  Google Scholar 

  5. Coscia, A., Mingione, G.: Hölder continuity of the gradient of \(p(x)\)-harmonic mappings. C. R. Acad. Sci. Paris, Ser. 1 Math. 328(4), 363–368 (1999)

    MATH  MathSciNet  Google Scholar 

  6. Diening, L.: Maximal function on generalized Lebesgue spaces \({L}^{\,p(\cdot)}\). Math. Inequal. Appl. 7(2), 245–254 (2004)

    MATH  MathSciNet  Google Scholar 

  7. Diening, L., Růžička, M.: Calderón–Zygmund operators on generalized Lebesgue spaces \({L}^{\,p(\cdot)}\) and problems related to fluid dynamics. J. Reine Angew. Math. 563, 197–220 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Dunford, N., Schwartz, J.T.: Linear Operators. Part I. General Theory. Interscience, New York (1958)

    MATH  Google Scholar 

  9. Edmunds, D.E., Rákosník, J.: Density of smooth functions in \(W^{k,p(x)}(\Omega)\). Proc. R. Soc. London, Ser. A 437, 229–236 (1992)

    Article  MATH  Google Scholar 

  10. Edmunds, D.E., Rákosník, J.: Sobolev embedding with variable exponent. Stud. Math. 143, 267–293 (2000)

    MATH  Google Scholar 

  11. Edmunds, D.E., Rákosník, J.: Sobolev embedding with variable exponent, II. Math. Nachr. 246–247, 53–67 (2002)

    Article  Google Scholar 

  12. Edmunds, D.E., Meskhi, A.: Potential-type operators in \(L\sp {\,p(x)}\) spaces. Z. Anal. Anwend. 21, 681–690 (2002)

    MATH  MathSciNet  Google Scholar 

  13. Fan, X., Shen, J., Zhao, D.: Sobolev embedding theorems for spaces \(W^{\,k,p(x)}\). J. Math. Anal. Appl. 262, 749–760 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fan, X., Zhao, D.: A class of De Giorgi type and Hölder continuity. Nonlinear Anal. 36, 295–318 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fan, X., Zhao, D.: The quasi-minimizers of integral functionals with \(m(x)\) growth conditions. Nonlinear Anal. 39, 807–816 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fan, X., Zhang, Q.: Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem. Nonlinear Anal. 52, 1843–1852 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Harjulehto, P., Hästö, P.: A capacity approach to Poincaré inequalities and Sobolev imbedding in variable exponent Sobolev spaces. Rev. Mat. Complut. 17, 129–146 (2004)

    MATH  MathSciNet  Google Scholar 

  18. Harjulehto, P., Hästö, P., Koskenoja, M.: The Dirichlet energy integral on intervals in variable exponent Sobolev spaces. Z. Anal. Anwend. 22(4), 911–923 (2003)

    Article  MATH  Google Scholar 

  19. Harjulehto, P., Hästö, P., Koskenoja, M., Varonen, S.: Sobolev capacity on the space \(W^{1,p(\cdot)}({{\rm{I}\kern-2pt{R}}^n})\). J. Funct. Spaces Appl. 1(1), 17–33 (2003)

    MATH  MathSciNet  Google Scholar 

  20. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  21. Hudzik, H.: The problems of separability, duality, reflexivity and of comparison for generalized Orlicz–Sobolev spaces \(W_M^k(\Omega)\). Comment. Math. Prace Mat. 21, 315–324 (1980)

    MathSciNet  Google Scholar 

  22. Hästö, P.: On the density of continuous functions in variable exponent Sobolev space. Rev. Mat. Iberoamericana, to appear

  23. Hästö, P.: Counter-examples of regularity in variable exponent Sobolev spaces. In: The p-Harmonic Equation and Recent Advances in Analysis (Manhattan, KS, 2004), Contemp. Math. vol. 367, pp. 133–143. American Mathematical Society, Providence, Rhode Island (2005)

    Google Scholar 

  24. Kilpeläinen, T.: A remark on the uniqueness of quasi continuous functions. Ann. Acad. Sci. Fenn., Math. 23, 261–262 (1998)

    MATH  MathSciNet  Google Scholar 

  25. Kilpeläinen, T., Kinnunen, J., Martio, O.: Sobolev spaces with zero boundary values on metric spaces. Potential Anal. 12, 233–247 (2000)

    Article  MathSciNet  Google Scholar 

  26. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic, London (1980)

    MATH  Google Scholar 

  27. Kováčik, O., Rákosník, J.: On spaces \(L^{\,p(x)}\) and \(W^{1,p(x)}\). Czechoslov. Math. J. 41(116), 592–618 (1991)

    Google Scholar 

  28. Malý, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equation, Mathematical Surveys and Monographs, vol. 51. American Mathematical Society, Providence, Rhode Island (1997)

    Google Scholar 

  29. Marcellini, P.: Regularity and existance of solutions of elliptic equations with \(p,q\)-growth conditions. J. Differ. Equ. 50(1), 1–30 (1991)

    Article  MathSciNet  Google Scholar 

  30. Musielak, J.: Orlicz Spaces and Modular Spaces. Springer, Berlin Heidelberg New York (1983)

    MATH  Google Scholar 

  31. Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3, 200–212 (1931)

    MATH  Google Scholar 

  32. Pick, L., Růžička, M.: An example of a space \(L^{{p{\left( x \right)}}} \) on which the Hardy–Littlewood maximal operator is not bounded. Expo. Math. 19, 369–371 (2001)

    MATH  MathSciNet  Google Scholar 

  33. Rákosník, J.: Sobolev inequality with variable exponent. In: Mustonen, V., Rákosník, J. (eds.) Function Spaces, Differential Operators and Nonlinear Analysis, pp. 220–228. Mathematical Institute of the Academy of Sciences of the Czech Republic, Prague (2000)

    Google Scholar 

  34. Rudin, W.: Functional Analysis, TMH Edition, 14th Reprint. Tata McGraw-Hill, New Delhi (1990)

    Google Scholar 

  35. Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin Heidelberg New York (2000)

    MATH  Google Scholar 

  36. Samko, S.: Denseness of \(C^\infty_0({{\rm{I}\kern-2pt{R}}^n})\) in the generalized Sobolev spaces \(W^{\,m,p(x)}({{\rm{I}\kern-2pt{R}}^n})\) (Russian). Dokl. Ross. Acad Nauk 369(4), 451–454 (1999); translation in Dokl. Math. 60, 382–385 (1999)

    MATH  MathSciNet  Google Scholar 

  37. Shanmugalingam, N.: Harmonic functions on metric spaces. Ill. J. Math. 45(3), 1021–1050 (2001)

    MATH  MathSciNet  Google Scholar 

  38. Sharapudinov, I.I.: The topology of the space \(\mathcal{L}^{p(t)}([0,1])\). Mat. Zametki 26(4), 613–632 (1979)

    MATH  MathSciNet  Google Scholar 

  39. Tsenov, I.V.: Generalization of the problem of best approximation of a function in the space \(L^s\). Uch. Zap. Dagestan Gos. Univ. 7, 25–37 (1961)

    Google Scholar 

  40. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk. SSSR, Ser. Mat. 50, 675–710, 877 (1986)

    MATH  MathSciNet  Google Scholar 

  41. Zhikov, V.V.: On Lavrentiev's phenomenon. Russ. J. Math. Phys. 3(2), 249–269 (1995)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petteri Harjulehto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harjulehto, P., Hästö, P., Koskenoja, M. et al. The Dirichlet Energy Integral and Variable Exponent Sobolev Spaces with Zero Boundary Values. Potential Anal 25, 205–222 (2006). https://doi.org/10.1007/s11118-006-9023-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-006-9023-3

Mathematics Subject Classifications (2000)

Key words

Navigation