Skip to main content
Log in

On a Stochastic Partial Differential Equation with Non-local Diffusion

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper, we prove existence, uniqueness and regularity for a class of stochastic partial differential equations with a fractional Laplacian driven by a space-time white noise in dimension one. The equation we consider may also include a reaction term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bardos, C., Penel, P., Frisch, U., Sulem P.L.: Modified dissipativity for a nonlinear evolution equation arising in turbulence. Arch. Rational Mech. Anal. 71, 237–256 (1979)

    Article  MATH  Google Scholar 

  2. Cairoli, R., Walsh, J.B.: Stochastic integrals in the plane. Acta Math. 134, 111–183 (1975)

    Article  MATH  Google Scholar 

  3. Dalang, R.C.: Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s. Electron. J. Probab. 4, 1–29 (1999)

    Google Scholar 

  4. Dawson, D.A., Gorostiza L.G.: Generalized solutions of a class of nuclear-space-valued stochastic evolution equations. Appl. Math. Optim. 22, 241–263 (1990)

    Article  MATH  Google Scholar 

  5. Droniou, J., Gallouet, T., Vovelle, J.: Global solution and smoothing effect for a non-local regularization of a hyperbolic equation. J. Evol. Equ. 3(3), 499–521 (2003)

    Article  MATH  Google Scholar 

  6. Droniou, J., Imbert, C.: Fractal first order partial differential equations. Arch. Rational Mech. Anal. 182, 229–261 (2004)

    Google Scholar 

  7. Itô, K.: Lectures on Stochastic Processes. Springer, Berlin Heidelberg New York (1984)

    MATH  Google Scholar 

  8. Komatsu, T.: On the martingale problem for genarators of stable processes with perturbations. Osaka J. Math. 21, 113–132 (1984)

    MATH  Google Scholar 

  9. Lévy, P.: Calcul des Probabilités. Gauthier-Villars, Paris (1925)

    MATH  Google Scholar 

  10. Mann, J.A., Woyczynski, W.A.: Growing fractal interfaces in the presence of self-similar hopping surface diffusion. Phys. A 291, 159–183 (2001)

    Article  MATH  Google Scholar 

  11. Metzler, R., Klafter J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MATH  Google Scholar 

  12. Pardoux, E.: Stochastic partial differential equations, a review. Bull. Sci. Math., II Série 117, 29–47 (1979)

    Google Scholar 

  13. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic, San Diego, CA (1999)

    MATH  Google Scholar 

  14. Stroock, D.W.: Diffusion processes associated with Lévy generators. Z. Wahrscheinlichkeitstheor. Verw. Geb. 32, 209–244 (1975)

    Article  MATH  Google Scholar 

  15. Walsh, J.B.: An introduction to stochastic partial differential equations. Ecole d’Eté de Probabilités de Saint–Flour XIV 1984. In: Lecture Notes in Mathematics, vol. 1180, pp. 265–437. Springer, Berlin, Heidelberg, New York (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Azerad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azerad, P., Mellouk, M. On a Stochastic Partial Differential Equation with Non-local Diffusion. Potential Anal 27, 183–197 (2007). https://doi.org/10.1007/s11118-007-9052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-007-9052-6

Keywords

Mathematics Subject Classifications (2000)

Navigation