Skip to main content
Log in

Regularity of Ornstein–Uhlenbeck Processes Driven by a Lévy White Noise

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

The paper is concerned with spatial and time regularity of solutions to linear stochastic evolution equation perturbed by Lévy white noise “obtained by subordination of a Gaussian white noise”. Sufficient conditions for spatial continuity are derived. It is also shown that solutions do not have in general cádlág modifications. General results are applied to equations with fractional Laplacian. Applications to Burgers stochastic equations are considered as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acquistapace, P.: Evolution operators and strong solutions of abstract linear parabolic equations. Differential Integral Equation 1(4), 433–457 (1988)

    MATH  MathSciNet  Google Scholar 

  2. Acquistapace, P., Terreni, B.: A unified approach to abstract linear nonautonomous parabolic equations. Rend. Semin. Mat. Univ. Padova 78, 47–107 (1987)

    MATH  MathSciNet  Google Scholar 

  3. Applebaum, D.: Lévy processes and stochastic calculus. In: Cambridge Studies in Advanced Mathematics, vol. 93. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  4. Applebaum, D.: On the infinitesimal generators of Ornstein–Uhlenbeck processes with jumps in Hilbert space. Potential Anal. 26(1), 79–100 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brzeźniak, Z.: Stochastic partial differential equations in M-type 2 Banach spaces. Potential Anal. 4(1), 1–45 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brzeźniak, Z.: On stochastic convolution in Banach spaces and applications. Stoch. Stoch. Rep. 61(3–4), 245–295 (1997)

    MATH  Google Scholar 

  7. Brzeźniak, Z.: Asymptotic compactness and absorbing sets for stochastic Burgers’ equations driven by space-time white noise and for some two-dimensional stochastic Navier–Stokes equations on certain unbounded domains. In: Stochastic Partial Differential Equations and Applications, VII. Lect. Notes Pure Appl. Math., vol. 245, pp. 35–52. Chapman & Hall/CRC, Boca Raton (2006)

    Google Scholar 

  8. Brzeźniak, Z., Debbi, L.: On stochastic Burgers equation driven by a fractional Laplacian and space-time white noise. In: Baxendale, P.H., Lototsky, S.V. (eds.) Stochastic Differential Equations: Theory and Applications, a Volume in Honor of Professor Boris Rozovskii, L. Interdiscip. Math. Sci., vol. 2, pp. 135–167. World Sci., Hackensack (2007)

  9. Brzeźniak, Z., Hausenblas, E.: Maximal regularity for stochastic convolutions driven by Lévy processes. Probab. Theory Relat. Fields 145(3), 615–637 (2009)

    Article  MATH  Google Scholar 

  10. Brzeźniak, Z., Li, Y.: Asymptotic compactness and absorbing sets for 2D stochastic Navier–Stokes equations on some unbounded domains. Trans. Am. Math. Soc. 358(12), 5587–5629 (2006)

    Article  MATH  Google Scholar 

  11. Brzeźniak, Z., van Neerven, J.: Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem. Studia Math. 143(1), 43–74 (2000)

    MATH  MathSciNet  Google Scholar 

  12. Brzeźniak, Z., van Neerven, J.: Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise. J. Math. Kyoto Univ. 43(2), 261–303 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Brzeźniak, Z., Peszat, S., Zabczyk, J.: Continuity of stochastic convolutions. Czechoslov. Math. J. 51(126), 679–684 (2001)

    Article  MATH  Google Scholar 

  14. Chalk, C.: Nonlinear evolutionary equations in Banach spaces with fractional time derivative. Ph.D. thesis, The University of Hull, Kingston upon Hull, UK (2006)

  15. Chojnowska-Michalik, A.: On processes of Ornstein–Uhlenbeck type in Hilbert space. Stochastics 21(3), 251–286 (1987)

    MATH  MathSciNet  Google Scholar 

  16. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  17. Da Prato, G., Debussche, A., Temam, R.: Stochastic Burgers’ equation. NoDEA, Nonlinear Differ. Equ. Appl. 1(4), 389–402 (1994)

    Article  MATH  Google Scholar 

  18. Dettweiler, J., van Neerven, J.: Continuity versus nonexistence for a class of linear stochastic Cauchy problems driven by a Brownian motion. Czechoslov. Math. J. 56(131)(2), 579–586 (2006)

    Article  Google Scholar 

  19. Dong, Z., Xu, T.G.: One-dimensional stochastic Burgers equation driven by Lévy processess. J. Funct. Anal. 243(2), 631–678 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston, New York (1969)

    MATH  Google Scholar 

  21. Fuhrman, M., Röckner, M.: Generalized Mehler semigroups: the non-Gaussian case. Potential Anal. 12(1), 1–47 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hausenblas, E., Seidler, J.: Stochastic convolutions driven by martingales: maximal inequalities and exponential integrability. Stoch. Anal. Appl. 26(1), 98–119 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hausenblas, E., Seidler, J.: A note on maximal inequality for stochastic convolutions. Czechoslov. Math. J. 51(126)(4), 785–790 (2001)

    Article  MathSciNet  Google Scholar 

  24. Hoffmann-Jørgensen, J., Pisier, G.: The law of large numbers and the central limit theorem in Banach spaces. Ann. Probab. 4(4), 587–599 (1976)

    Article  Google Scholar 

  25. Kallenberg, O.: Foundations of modern probability. In: Probability and Its Applications, 2nd edn. Springer, New York (2002)

    Google Scholar 

  26. Kwapień, S., Woyczyński, W.: Random series and stochastic integrals: single and multiple. In: Probability and Its Applications. Birkhäuser Boston, Boston (1992)

    Google Scholar 

  27. Kwapień, S., Marcus, M.B., Rosiński, J.: Two results on continuity and boundedness of stochastic convolutions. Ann. Inst. Henri Poincaré Probab. Stat. 42(5), 553–566 (2006)

    Article  MATH  Google Scholar 

  28. Lescot, P., Röckner, M.: Perturbations of generalized Mehler semigroups and applications to stochastic heat equations with Lévy noise and singular drift. Potential Anal. 20(4), 317–344 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Linde, W.: Probability in Banach Spaces—Stable and Infinitely Divisible Distributions, 2nd edn. Wiley, New York (1986)

    MATH  Google Scholar 

  30. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972), Translated from the French by Kenneth, P., Die Grundlehren der mathematischen Wissenschaften, Band 181

    MATH  Google Scholar 

  31. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equation and their Applications, vol. 16. Birkhäuser Verlag, Basel (1995)

    MATH  Google Scholar 

  32. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  33. Mueller, C.: The heat equation with Lévy noise. Stoch. Process. Appl 74, 67–82 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mytnik, L.: Stochastic partial differential equation driven by stable noise. Probab. Theory Relat. Fields 123, 157–201 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    MATH  Google Scholar 

  36. Peszat, S., Zabczyk, J.: Stochastic heat and wave equations driven by an impulsive noise. In: Da Prato, G., Tubaro, L. (eds.) Stochastic Partial Differential Equations and Applications VII. Lecture Notes in Pure and Applied mathematics, vol. 245, pp. 229–242 (2006)

  37. Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise. An Evolution Equation Approach. Encyclopedia of Mathematics and its Applications, vol. 113. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  38. Pisier, G.: Probabilistic methods in the geometry of banach spaces. In: Probability and Analysis (Varenna 1985). LNM, vol. 1206, pp. 167–241. Springer, Berlin (1986)

    Chapter  Google Scholar 

  39. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advance Mathematics, vol. 68. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  40. Seeley, R.: Interpolation in L p with boundary conditions. Studia Math. 44, 47–60, Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, I (1972)

  41. Tanabe, H.: Equations of Evolution, Monographs and Studies in Mathematics, vol. 6. Pitman, Boston (1979)

    Google Scholar 

  42. Taylor, M.E.: Pseudodifferential Operators. Princeton University Press, Princeton (1981)

    MATH  Google Scholar 

  43. Triebel, H.: Theory of Function Spaces, Monographs in Mathematics, vol. 78. Birkhäuser Verlag, Basel (1983)

    Google Scholar 

  44. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. Johann Ambrosius Barth, Heidelberg (1995)

    MATH  Google Scholar 

  45. Truman, A., Wu, J.L.: Fractional Burgers equation driven by Levy noise. In: Da Prato, G., Tubaro, L. (eds.) Stochastic Partial Differential Equations and Applications VII. Lecture Notes in Pure and Applied Mathematics, vol. 245, pp. 293–310 (2006)

  46. Veraar, M.: Non-autonomous stochastic evolution equations and applications to stochastic partial differential equations. J. Evol. Equ. preprint arXiv:0806.4439 (to appear)

  47. Yagi, A.: Abstract quasilinear evolution equations of parabolic type in Banach spaces. Boll. Unione Mat. Ital., B (7) 5(2), 341–368 (1991)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdzisław Brzeźniak.

Additional information

Supported by the Polish Ministry of Science and Education project 1PO 3A 034 29 ‘‘Stochastic evolution equations with Lévy noise’’ and by EC FP6 Marie Curie ToK programme SPADE2. Research of the first named author was also supported by an EPSRC grant number EP/E01822X/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brzeźniak, Z., Zabczyk, J. Regularity of Ornstein–Uhlenbeck Processes Driven by a Lévy White Noise. Potential Anal 32, 153–188 (2010). https://doi.org/10.1007/s11118-009-9149-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-009-9149-1

Keywords

Mathematics Subject Classifications (2000)

Navigation