Skip to main content
Log in

Ornstein-Uhlenbeck Processes Driven by Cylindrical Lévy Processes

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this article we introduce a theory of integration for deterministic, operator-valued integrands with respect to cylindrical Lévy processes in separable Banach spaces. Here, a cylindrical Lévy process is understood in the classical framework of cylindrical random variables and cylindrical measures, and thus, it can be considered as a natural generalisation of cylindrical Wiener processes or white noises. Depending on the underlying Banach space, we provide necessary and/or sufficient conditions for a function to be integrable. In the last part, the developed theory is applied to define Ornstein-Uhlenbeck processes driven by cylindrical Lévy processes and several examples are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum, D., Riedle, M.: Cylindrical Lévy processes in Banach spaces. Proc. Lond. Math. Soc. 101(3), 697–726 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Badrikian, A.: Séminaire sur les fonctions aléatoires linéaires et les mesures cylindriques, vol. 139. Springer, Berlin (1970)

    Google Scholar 

  3. Bogachev, V.I.: Gaussian measures. American Mathematical Society, Providence, RI (1998)

    Book  MATH  Google Scholar 

  4. Bogachev, V.I.: Measure theory. Vol. I and II. Springer, Berlin (2007)

    MATH  Google Scholar 

  5. Bourbaki, N.: Elements of mathematics. Functions of a real variable. Elementary theory. Translational from the French. Springer, Berlin (2004)

    Book  Google Scholar 

  6. Brzeźniak, Z., Goldys, B., Imkeller, P., Peszat, S., Priola, E., Zabczyk, J.: Time irregularity of generalized Ornstein-Uhlenbeck processes. C. R., Math., Acad. Sci. Paris 348(5-6), 273–276 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brzeźniak, Z., Van Neerven, J.M.A.M.: Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem. Stud. Math. 143(1), 43–74 (2000)

    MATH  Google Scholar 

  8. Brzeźniak, Z., Zabczyk, J.: Regularity of Ornstein-Uhlenbeck processes driven by a Lévy white noise. Potential Anal. 32(2), 153–188 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chojnowska-Michalik, A.: On processes of Ornstein-Uhlenbeck type in Hilbert space. Stochastics 21, 251–286 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. De Araujo, A.P., Giné, E.: Type, cotype and Lévy measures in Banach spaces. Ann. Probab. 6, 637–643 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dieudonné, J.: Foundations of modern analysis. Academic Press, New York (1969)

    MATH  Google Scholar 

  12. Dunford, N., Schwartz, J.T.: Linear operators. Part I: General theory. Wiley & sons, Ltd., New York (1988)

    MATH  Google Scholar 

  13. Fremlin, D.H.: Measure theory. Vol. 4. Topological measure spaces. Colchester, Torres Fremlin (2006)

    MATH  Google Scholar 

  14. Fremlin, D.H., Garling, D.J.H., Haydon, R.G.: Bounded measures on topological spaces. Proc. Lond. Math. Soc. 25(3), 115–136 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jacod, J., Shiryaev, A.N.: Limit theorems for stochastic processes. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  16. Jurinskii, V.V.: On infinitely divisible distributions. Theory Probab. Appl. 19, 297–308 (1974)

    Article  MATH  Google Scholar 

  17. Linde, W.: Infinitely divisible and stable measures on Banach spaces. Teubner Verlagsgesellschaft, Leipzig: BSB B. G. (1983)

    MATH  Google Scholar 

  18. Liu, Y., Zhai, J.: A note on time regularity of generalized Ornstein-Uhlenbeck processes with cylindrical stable noise. C. R., Math., Acad. Sci. Paris 350(1-2), 97–100 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Megginson, R.E.: An introduction to Banach space theory. Springer, NY (1998)

    Book  MATH  Google Scholar 

  20. Métivier, M., Pellaumail, J.: Cylindrical stochastic integral. Sém. de l’Université de Rennes 63, 1–28 (1976)

    Google Scholar 

  21. Métivier, M., Pellaumail, J.: Stochastic integration. Academic Press, New York (1980)

    MATH  Google Scholar 

  22. Mikulevičius, R., Rozovskiı̌, B.L.: Normalized stochastic integrals in topological vector spaces. Séminaire de Probabilités XXXII, pp. 191–214. Springer: Lectures Notes Mathematics 1686, Berlin (1998)

    Google Scholar 

  23. Mikulevičius, R., Rozovskiı̌, B.L., et al.: Martingale problems for stochastic PDE’s. In: Carmona, R.A. (ed.) Stochastic partial differential equations: six perspectives, pp. 243–325. American Mathematical Society. Mathematical Surveys Monograph 64, Providence, RI (1999)

    Chapter  Google Scholar 

  24. Musiał, K.: Pettis integral. In Handbook of measure theory. Vol. I and II, pp. 531–586. Amsterdam, North-Holland (2002)

    Book  Google Scholar 

  25. Parthasarathy, K.R.: Probability measures on metric spaces. Academic Press, New York (1967)

    Book  MATH  Google Scholar 

  26. Peszat, S., Zabczyk, J.: Stochastic partial differential equations with Lévy noise. An evolution equation approach. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  27. Peszat, S., Zabczyk, J.: Time regularity of solutions to linear equations with Lévy noise in infinite dimensions. Stoch. Process. Appl. 123(3), 719–751 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Priola, E., Zabczyk, J.: Structural properties of semilinear SPDEs driven by cylindrical stable processes. Probab. Theory Relat. Fields 149(1-2), 97–137 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Riedle, M.: Cylindrical Wiener processes. Séminaire de Probabilités XLIII, pp. 191–214. Springer. Lecture Notes in Mathematics 2006, Berlin (2011)

    Book  Google Scholar 

  30. Riedle, M.: Infinitely divisible cylindrical measures on Banach spaces. Stud. Math. 207(3), 235–256 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Riedle, M.: Stochastic integration with respect to cylindrical Lévy processes in Hilbert spaces: an L 2 approach. Infinite Dimensional Analysis, Quantum Probability and Related Topics, p. 17 (2014)

  32. Riedle, M., van Gaans, O.: Stochastic integration for Lévy processes with values in Banach spaces. Stoch. Process. Appl. 119(6), 1952–1974 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sato, K.-I.: Lévy processes and infinitely divisible distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  34. Schwartz, L.: Radon measures on arbitrary topological spaces and cylindrical measures. Oxford University Press, London (1973)

    MATH  Google Scholar 

  35. Vakhaniya, N.N., Tarieladze, V.I., Chobanyan, S.A.: Probability distributions on Banach spaces. D. Reidel Publishing Company (1987)

  36. van Neerven, J.M.A.M., Weis, L.: Stochastic integration of functions with values in a Banach space. Stud. Math. 166(2), 131–170 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Yosida, K.: Functional analysis. Springer, Berlin (1980)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Riedle.

Additional information

The author acknowledges the EPSRC grant EP/I036990/1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riedle, M. Ornstein-Uhlenbeck Processes Driven by Cylindrical Lévy Processes. Potential Anal 42, 809–838 (2015). https://doi.org/10.1007/s11118-014-9458-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-014-9458-x

Keywords

Mathematics Subject Classification (2010)

Navigation