Skip to main content
Log in

Heavy traffic approximation for the stationary distribution of stochastic fluid networks

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

It has recently been shown that in the heavy traffic limit, the stationary distribution of the scaled queue length process of a Generalized Jackson Network converges to the stationary distribution of its corresponding Reflected Brownian Motion limit. In this paper, we show that this “interchange of limits” is valid for Stochastic Fluid Networks with Lévy inputs. Furthermore, under additional assumptions, we extend the result to show that the interchange is valid for moments of the stationary distribution and for state-dependent routing. The results are obtained using monotonicity and sample-path arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asmussen, S.: Applied Probability and Queues, second edn. Applications of Mathematics, vol. 51. Springer, New York (2003)

    Google Scholar 

  2. Atar, R., Budhiraja, A., Dupuis, P.: On positive recurrence of constrained diffusion processes. Ann. Probab. 29(2), 979–1000 (2001)

    Article  Google Scholar 

  3. Billingsley, P.: Convergence of probability measures, second edn. Wiley Series in Probability and Statistics, Wiley, New York (1999)

    Book  Google Scholar 

  4. Bramson, M.: Stability of Queueing Networks. Lecture Notes in Mathematics, vol. 1950. Springer, Berlin (2008)

    Google Scholar 

  5. Budhiraja, A., Lee, C.: Stationary distribution convergence for generalized Jackson networks in heavy traffic. Math. Oper. Res. 34(1), 45–56 (2009)

    Article  Google Scholar 

  6. Chen, H., Yao, D.D.: Fundamentals of Queueing Networks. Applications of Mathematics, vol. 46. Springer, New York (2001)

    Google Scholar 

  7. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Financial Mathematics Series. Chapman & Hall /CRC, Boca Raton (2004)

    Google Scholar 

  8. Gamarnik, D., Zeevi, A.: Validity of heavy traffic steady-state approximation in generalized Jackson networks. Ann. Appl. Probab. 16(1), 56–90 (2006)

    Article  Google Scholar 

  9. Haddad, J.P., Mazumdar, R.R., Piera, F.J.: Pathwise comparison results for stochastic fluid networks. Queueing Syst. 66, 155–168 (2010)

    Article  Google Scholar 

  10. Harrison, J.M., Reiman, M.I.: Reflected Brownian motion in an orthant. Ann. Probab. 9, 302–308 (1981)

    Article  Google Scholar 

  11. Harrison, J.M., Williams, R.J.: Brownian models of open queueing networks with homogeneous customer populations. Stochastics 22, 77–115 (1987)

    Article  Google Scholar 

  12. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, second edn. Grundlehren der Mathematischen Wissenschaften, vol. 288. Springer, Berlin (2003) [Fundamental Principles of Mathematical Sciences]

    Google Scholar 

  13. Kella, O.: Parallel and tandem fluid networks with dependent Lévy inputs. Ann. Appl. Probab. 3(3), 682–695 (1993)

    Article  Google Scholar 

  14. Kella, O.: Stability and nonproduct form of stochastic fluid networks with Lévy inputs. Ann. Appl. Probab. 6(1), 186–199 (1996)

    Article  Google Scholar 

  15. Kella, O., Whitt, W.: Diffusion approximations for queues with server vacations. Adv. Appl. Probab. 22, 706–729 (1990)

    Article  Google Scholar 

  16. Kella, O., Whitt, W.: Useful martingales for stochastic storage processes with Lévy input. J. Appl. Probab. 29(2), 396–403 (1992)

    Article  Google Scholar 

  17. Kella, O., Whitt, W.: Stability and structural properties of stochastic storage networks. J. Appl. Probab. 33(4), 1169–1180 (1996)

    Article  Google Scholar 

  18. Konstantopoulos, T., Last, G., Lin, S.-J.: On a class of Lévy stochastic networks. Queueing Syst. 46, 409–437 (2004)

    Article  Google Scholar 

  19. Kushner, H.J.: Heavy Traffic Analysis of Controlled Queueing and Communication Networks. Applications of Mathematics, vol. 47. Springer, New York (2001)

    Google Scholar 

  20. Piera, F.J., Mazumdar, R.R.: Comparison results for reflected jump-diffusions in the orthant with variable reflection directions and stability applications. Electron. J. Probab. 13(61), 1886–1908 (2008)

    Google Scholar 

  21. Piera, F.J., Mazumdar, R.R., Guillemin, F.M.: Existence and characterization of product-form invariant distributions for state-dependent stochastic networks in the heavy-traffic diffusion limit. Queueing Syst. Theory Appl. 58(1), 3–27 (2008)

    Article  Google Scholar 

  22. Ramasubramanian, S.: A subsidy-surplus model and the Skorokhod problem in an orthant. Math. Oper. Res. 25(3), 509–538 (2000)

    Article  Google Scholar 

  23. Shen, X., Chen, H., Dai, J.G., Dai, W.: The finite element method for computing the stationary distribution of an SRBM in a hypercube with applications to finite buffer queueing networks. Queueing Systems Theory Appl. 42(1), 33–62 (2002)

    Article  Google Scholar 

  24. Whitt, W.: Stochastic-Process Limits. Springer Series in Operations Research. Springer, New York (2002)

    Google Scholar 

  25. Williams, R.J.: Semimartingale reflecting Brownian motions in the orthant. In: Stochastic Networks. IMA Vol. Math. Appl., vol. 71, pp. 125–137. Springer, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Haddad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haddad, JP., Mazumdar, R.R. Heavy traffic approximation for the stationary distribution of stochastic fluid networks. Queueing Syst 70, 3–21 (2012). https://doi.org/10.1007/s11134-011-9256-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-011-9256-8

Keywords

Mathematics Subject Classification (2000)

Navigation