Skip to main content

Advertisement

Log in

Some classes of completely monotonic functions, II

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

A function \(f\!:(0,\infty)\rightarrow \mathbf{R}\) is said to be completely monotonic if \((-1)^n f^{(n)}(x)\geq 0\) for all x > 0 and n = 0,1,2,.... In this paper we present several new classes of completely monotonic functions. Our functions have in common that they are defined in terms of the classical gamma, digamma, and polygamma functions. Moreover, we apply one of our monotonicity theorems to prove a new inequality for prime numbers. Some of the given results extend and complement theorems due to Bustoz & Ismail, Clark & Ismail, and other researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1965)

    MATH  Google Scholar 

  2. Akhiezer, N.I.: The Classical Moment Problem and some related Questions in Analysis. English translation, Oliver and Boyd, Edinburgh (1965)

    MATH  Google Scholar 

  3. Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comp. 66, 373–389 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alzer, H.: Mean-value inequalities for the polygamma functions. Aequat. Math. 61, 151–161 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alzer, H., Berg, C.: Some classes of completely monotonic functions. Ann. Acad. Scient. Fennicae 27, 445–460 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Anderson, G.D., Barnard, R.W., Richards, K.C., Vamanamurthy, M.K., Vuorinen, M.: Inequalities for zero-balanced hypergeometric functions. Trans. Amer. Math. Soc. 347, 1713–1723 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andrews, G.E., Askey, R., Roy, R.: Special functions. Cambridge Univ. Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  8. Berg, C.: Quelques remarques sur le cône de Stieltjes. In: Séminaire de Théorie du Potentiel Paris, No. 5. Lecture Notes in Mathematics 814, Springer, Berlin-Heidelberg-New York (1980)

    Book  MATH  Google Scholar 

  9. Berg, C., Forst, G.: Potential Theory on Locally Compact Abelian Groups. Ergebnisse der Math. 87, Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  10. Berg, C., Pedersen, H.L.: A completely monotone function related to the gamma function. J. Comp. Appl. Math. 133, 219–230 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berg, C., Pedersen, H.L.: Pick functions related to the gamma function. Rocky Mount. J. Math. 32, 507–525 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bochner, S.: Harmonic Analysis and The Theory of Probability. Univ. of California Press, Berkeley-Los Angeles (1960)

    MATH  Google Scholar 

  13. Bondesson, L.: Generalized gamma convolutions and related classes of distributions and densities. Lecture Notes in Statistics 76, Springer, New York (1992)

    Book  MATH  Google Scholar 

  14. Bonse, H.: Über eine bekannte Eigenschaft der Zahl 30 und ihre Verallgemeinerung. Arch. Math. Phys. 12, 292–295 (1907)

    MATH  Google Scholar 

  15. Bustoz, J., Ismail, M.E.H.: On gamma function inequalities. Math. Comp. 47, 659–667 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Canfield, E.R.: Problem 10310. Amer. Math. Monthly 100, 499 (1993); 103, 431–432 (1996)

    Google Scholar 

  17. Clark, W.E., Ismail, M.E.H.: Inequalities involving gamma and psi functions. Anal. Appl. 1, 129–140 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Czinder, P., Páles, Z.: A general Minkowski-type inequality for two variable Gini means. Publ. Math. Debrecen 57, 203–216 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Dang, H., Weerakkody, G.: Bounds for the maximum likelihood estimates in two-parameter gamma distribution. J. Math. Anal. Appl.245, 1–6 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Donoghue, Jr., W.F.: Monotone Matrix Functions and Analytic Continuation. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  21. Dubourdieu, J.: Sur un théorème de M.S. Bernstein relatif à la transformation de Laplace-Stieltjes. Compositio Math. 7, 96–111 (1939)

    MathSciNet  MATH  Google Scholar 

  22. Erdélyi, A. (ed.): Higher Transcendental Functions, Vol. 1. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  23. Fink, A.M.: Kolmogorov-Landau inequalities for monotone functions. J. Math. Anal. Appl. 90, 251–258 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gautschi, W.: The incomplete gamma function since Tricomi. In: Tricomi's ideas and contemporary applied mathematics. Atti Convegni Lincei 147, pp. 207–237, Accad. Naz. Lincei, Rome (1998)

    MathSciNet  Google Scholar 

  25. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Univ. Press, Cambridge (1952)

    MATH  Google Scholar 

  26. Hirsch, F.: Transformation de Stieltjes et fonctions opérant sur les potentiels abstraits. In: Lecture Notes in Mathematics 404, 149–163, Springer, Berlin-Heidelberg-New York (1974)

    Article  MATH  Google Scholar 

  27. Ismail, M.E.H., Lorch, L., Muldoon, M.E.: Completely monotonic functions associated with the gamma function and its q-analogues. J. Math. Anal. Appl. 116, 1–9 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Itô, M.: Sur les cônes convexes de Riesz et les noyaux complètement sous-harmoniques. Nagoya Math. J. 55, 111–144 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kershaw, D., Laforgia, A.: Monotonicity results for the gamma function. Atti Accad. Sci. Torino 119, 127–133 (1985)

    MathSciNet  MATH  Google Scholar 

  30. Kimberling, C.H.: A probabilistic interpretation of complete monotonicity. Aequat. Math. 10, 152–164 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  31. Merkle, M.: On log-convexity of a ratio of gamma functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 8, 114–119 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Mitrinović, D.S., Sándor, J., Crstici, B.: Handbook of Number Theory. Kluwer, Dordrecht (1996)

    MATH  Google Scholar 

  33. Muldoon, M.E.: Some monotonicity properties and characterizations of the gamma function. Aequat. Math. 18, 54–63 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  34. Palumbo, B.: Determinantal inequalities for the psi function. Math. Inequal. Appl. 2, 223–231 (1999)

    MathSciNet  MATH  Google Scholar 

  35. Panaitopol, L.: An inequality involving prime numbers. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 11, 33–35 (2000)

    MathSciNet  MATH  Google Scholar 

  36. Reuter, G.E.H.: ÜUber eine Volterrasche Integralgleichung mit totalmonotonem Kern. Arch. Math. 7, 59–66 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  37. Robin, G.: Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω nombre de diviseurs premiers de n. Acta Arith. 42, 367–389 (1983)

    MathSciNet  Google Scholar 

  38. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Illinois J. Math. 6, 64–94 (1962)

    MathSciNet  MATH  Google Scholar 

  39. Sándor, J.: Sur la fonction gamma. Publ. C.R.M.P. Neuchòtel Série I, 21, 4–7 (1989)

    MATH  Google Scholar 

  40. Sándor, J.; On some diophantine equations involving the factorial of a function. Seminar Arghiriade 21, 1–4 (1989) Univ. Timisoara (Romania)

    Google Scholar 

  41. Thorin, O.: On the infinite divisibility of the Pareto distribution. Scand. Actuarial. J., 31–40 (1977)

  42. Thorin, O.: On the infinite divisibility of the lognormal distribution. Scand. Actuarial. J., 121–148 (1977)

  43. Trimble, S.Y., Wells, J., Wright, F.T.: Superadditive functions and a statistical application. SIAM J. Math. Anal. 20, 1255–1259 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  44. Widder, D.V.: The Laplace Transform. Princeton Univ. Press, Princeton (1941)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Alzer.

Additional information

2000 Mathematics Subject Classification Primary—11A41, 26A48, 33B15; Secondary—26D15

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alzer, H., Berg, C. Some classes of completely monotonic functions, II. Ramanujan J 11, 225–248 (2006). https://doi.org/10.1007/s11139-006-6510-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-006-6510-5

Keywords

Navigation