Skip to main content
Log in

Apollonian circle packings: Number theory II. Spherical and hyperbolic packings

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Apollonian circle packings arise by repeatedly filling the interstices between mutually tangent circles with further tangent circles. In Euclidean space it is possible for every circle in such a packing to have integer radius of curvature, and we call such a packing an integral Apollonian circle packing. There are infinitely many different integral packings; these were studied in Part I (J. Number Theory 100, 1–45, 2003). Integral circle packings also exist in spherical and hyperbolic space, provided a suitable definition of curvature is used and again there are an infinite number of different integral packings. This paper studies number-theoretic properties of such packings. This amounts to studying the orbits of a particular subgroup \({\mathcal{A}}\) of the group of integral automorphs of the indefinite quaternary quadratic form \(Q_{{\mathcal{D}}}(w,x,y,z)=2(w^{2}+x^{2}+y^{2}+z^{2})-(w+x+y+z)^{2}\) . This subgroup, called the Apollonian group, acts on integer solutions \(Q_{{\mathcal{D}}}(w,x,y,z)=k\) . This paper gives a reduction theory for orbits of \({\mathcal{A}}\) acting on integer solutions to \(Q_{{\mathcal{D}}}(w,x,y,z)=k\) valid for all integer k. It also classifies orbits for all k≡0 (mod 4) in terms of an extra parameter n and an auxiliary class group (depending on n and k), and studies congruence conditions on integers in a given orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, D., Stephenson, K.: Geometric sequences of discs in the Apollonian packing. Algebra Anal. 9(3), 104–140 (1997) [English version: St. Petersburg Math. J. 9, 509–545 (1998)]

    MathSciNet  Google Scholar 

  2. Buell, D.: Binary Quadratic Forms. Classical Theory and Modern Computations. Springer, New York (1989)

    MATH  Google Scholar 

  3. Coxeter, H.S.M.: Introduction to Geometry, 2nd edn. Wiley, New York (1969)

    MATH  Google Scholar 

  4. Davenport, H.: Multiplicative Number Theory, 2nd edn. Springer, New York (1980). Revised by H. Montgomery

    MATH  Google Scholar 

  5. Graham, R.L., Lagarias, J.C., Mallows, C.L., Wilks, A., Yan, C.: Apollonian circle packings: geometry and group theory, I. The Apollonian group. Discrete Comput. Geom. 34, 547–585 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Graham, R.L., Lagarias, J.C., Mallows, C.L., Wilks, A., Yan, C.: Apollonian circle packings: geometry and group theory, II. Super-Apollonian group. Discrete Comput. Geom. 35, 1–36 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Graham, R.L., Lagarias, J.C., Mallows, C.L., Wilks, A., Yan, C.: Apollonian circle packings: geometry and group theory, III. Higher dimensions. Discrete Comput. Geom. 35, 37–72 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Graham, R.L., Lagarias, J.C., Mallows, C.L., Wilks, A., Yan, C.: Apollonian circle packings: number theory. J. Number Theory 100, 1–45 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kasner, E., Supnick, F.: The Apollonian packing of circles. Proc. Natl. Acad. Sci. U.S.A. 29, 378–384 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lagarias, J.C., Mallows, C.L., Wilks, A.: Beyond the Descartes circle theorem. Am. Math. Mon. 109, 338–361 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lang, S.: Algebraic Number Theory, 2nd edn. Springer, New York (1994)

    MATH  Google Scholar 

  12. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1982)

    MATH  Google Scholar 

  13. Mathews, G.A.: Theory of Numbers, 2nd edn. Cambridge (1892). Reprint: Chelsea, New York (1962)

  14. Maxwell, G.: Sphere packings and hyperbolic reflection groups. J. Algebra 79, 78–97 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Northshield, S.: On integral Apollonian circle packings. J. Number Theory 119, 171–193 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ramaré, O.: Approximate formulae for L(1,χ). Acta Arith. 100, 245–266 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ratcliffe, J.G., Tschantz, S.T.: On the representation of integers by the Lorentzian quadratic form. J. Funct. Anal. 150, 498–525 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Siegel, C.L.: Über die analytische Theorie der quadratischen Formen. Ann. Math. 36, 527–606 (1935)

    Article  Google Scholar 

  19. Söderberg, B.: Apollonian tiling, the Lorentz group, and regular trees. Phys. Rev. A 46(4), 1859–1866 (1992)

    Article  MathSciNet  Google Scholar 

  20. Wilker, J.B.: Inversive geometry. In: Davis, C., Grünbaum, B., Sherk, F.A. (eds.) The Geometric Vein, pp. 379–442. Springer, New York (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Eriksson.

Additional information

Much of this work was done while the authors were at AT&T Labs-Research, whom the authors thank for support. N. Eriksson was also supported by an NDSEG fellowship and J.C. Lagarias by NSF grant DMS-0500555.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksson, N., Lagarias, J.C. Apollonian circle packings: Number theory II. Spherical and hyperbolic packings. Ramanujan J 14, 437–469 (2007). https://doi.org/10.1007/s11139-007-9052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-007-9052-6

Keywords

Mathematics Subject Classification (2000)

Navigation