Skip to main content
Log in

Mass equidistribution of Hilbert modular eigenforms

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let \(\mathbb{F}\) be a totally real number field, and let f traverse a sequence of non-dihedral holomorphic eigencuspforms on \(\operatorname{GL}_{2}/\mathbb{F}\) of weight \((k_{1},\ldots,k_{[\mathbb{F}:\mathbb{Q}]})\), trivial central character and full level. We show that the mass of f equidistributes on the Hilbert modular variety as \(\max(k_{1},\ldots,k_{[\mathbb{F}:\mathbb{Q}]}) \rightarrow \infty\).

Our result answers affirmatively a natural analog of a conjecture of Rudnick and Sarnak (Commun. Math. Phys. 161(1), 195–213, 1994). Our proof generalizes the argument of Holowinsky–Soundararajan (Ann. Math. 172(2), 1517–1528, 2010) who established the case \(\mathbb{F} = \mathbb{Q}\). The essential difficulty in doing so is to adapt Holowinsky’s bounds for the Weyl periods of the equidistribution problem in terms of manageable shifted convolution sums of Fourier coefficients to the case of a number field with nontrivial unit group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Blasius, D.: Hilbert modular forms and the Ramanujan conjecture. In: Noncommutative Geometry and Number Theory. Aspects Math., vol. E37, pp. 35–56. Vieweg, Wiesbaden (2006)

    Chapter  Google Scholar 

  2. Blomer, V., Harcos, G.: Twisted L-functions over number fields and Hilbert’s eleventh problem. Geom. Funct. Anal. 20(1), 1–52 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Colin de Verdière, Y.: Ergodicité et fonctions propres du laplacien. In: Bony–Sjöstrand–Meyer Seminar, 1984–1985, p. 8. École Polytech., Palaiseau (1985). Exp. No. 13

    Google Scholar 

  4. Davenport, H.: Multiplicative Number Theory, 2nd edn. Graduate Texts in Mathematics, vol. 74. Springer, New York (1980). Revised by Hugh L. Montgomery

    MATH  Google Scholar 

  5. Gelbart, S., Jacquet, H.: A relation between automorphic representations of GL(2) and GL(3). Ann. Sci. École Norm. Sup. (4) 11(4), 471–542 (1978)

    MathSciNet  MATH  Google Scholar 

  6. Gelbart, S., Jacquet, H.: Forms of GL(2) from the analytic point of view. In: Automorphic Forms, Representations and L-Functions, Part 1, Oregon State Univ., Corvallis, Ore., 1977. Proc. Sympos. Pure Math., vol. XXXIII, pp. 213–251. Amer. Math. Soc., Providence (1979)

    Google Scholar 

  7. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Elsevier/Academic Press, Amsterdam (2007). Translated from the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, With one CD-ROM (Windows, Macintosh and UNIX)

    MATH  Google Scholar 

  8. Greaves, G.: Sieves in Number Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 43. Springer, Berlin (2001)

    MATH  Google Scholar 

  9. Harris, M., Kudla, S.S.: The central critical value of a triple product L-function. Ann. Math. 133(3), 605–672 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hildebrand, A., Tenenbaum, G.: Integers without large prime factors. J. Théor. Nr. Bordx. 5(2), 411–484 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hinz, J.G.: Methoden des grossen Siebes in algebraischen Zahlkörpern. Manuscr. Math. 57(2), 181–194 (1987)

    MathSciNet  MATH  Google Scholar 

  12. Hoffstein, J., Lockhart, P.: Coefficients of Maass forms and the Siegel zero. Ann. Math. 140(1), 161–181 (1994). With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman

    Article  MathSciNet  MATH  Google Scholar 

  13. Holowinsky, R.: A sieve method for shifted convolution sums. Duke Math. J. 146(3), 401–448 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Holowinsky, R.: Sieving for mass equidistribution. Ann. Math. 172(2), 1499–1516 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Holowinsky, R., Soundararajan, K.: Mass equidistribution for Hecke eigenforms. Ann. Math. 172(2), 1517–1528 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Ichino, A.: Trilinear forms and the central values of triple product L-functions. Duke Math. J. 145(2), 281–307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iwaniec, H.: Spectral Methods of Automorphic Forms, 2nd edn. Graduate Studies in Mathematics, vol. 53. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  18. Iwaniec, H.: Notes on the quantum unique ergodicity for holomorphic cusp forms (2010)

  19. Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  20. Iwaniec, H., Sarnak, P.: Perspectives on the analytic theory of L-functions. Geom. Funct. Anal. (Special Volume, Part II), 705–741 (2000). GAFA 2000 (Tel Aviv, 1999)

  21. Jacquet, H., Langlands, R.P.: Automorphic Forms on GL(2). Lecture Notes in Mathematics, vol. 114. Springer, Berlin (1970)

    MATH  Google Scholar 

  22. Jacquet, H.: Automorphic Forms on GL(2). Part II. Lecture Notes in Mathematics, vol. 278. Springer, Berlin (1972)

    MATH  Google Scholar 

  23. Kowalski, E.: The Large Sieve and Its Applications. Cambridge Tracts in Mathematics, vol. 175. Cambridge University Press, Cambridge (2008). Arithmetic geometry, random walks and discrete groups

    Book  MATH  Google Scholar 

  24. Krause, Uwe: Abschätzungen für die Funktion Ψ K (x,y) in algebraischen Zahlkörpern. Manuscr. Math. 69(3), 319–331 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Labesse, J.-P., Langlands, R.P.: L-indistinguishability for SL(2). Can. J. Math. 31(4), 726–785 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lindenstrauss, E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. Math. 163(1), 165–219 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Luo, W., Sarnak, P.: Quantum ergodicity of eigenfunctions on \(\mathrm {PSL}_{2}(\bold Z)\backslash H^{2}\). Publ. Math. IHÉS 81, 207–237 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Luo, W., Sarnak, P.: Mass equidistribution for Hecke eigenforms. Commun. Pure Appl. Math. 56(7), 874–891 (2003). Dedicated to the memory of Jürgen K. Moser

    Article  MathSciNet  MATH  Google Scholar 

  29. Marshall, S.: Mass equidistribution for automorphic forms of cohomological type on GL_2. ArXiv e-prints (June 2010)

  30. Montgomery, H.L.: A note on the large sieve. J. Lond. Math. Soc. 43, 93–98 (1968)

    Article  MATH  Google Scholar 

  31. Nair, M.: Multiplicative functions of polynomial values in short intervals. Acta Arith. 62(3), 257–269 (1992)

    MathSciNet  MATH  Google Scholar 

  32. Nair, M., Tenenbaum, G.: Short sums of certain arithmetic functions. Acta Math. 180(1), 119–144 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nelson, P.: Equidistribution of cusp forms in the level aspect. arXiv:1011.1292 [math.NT] (2010)

  34. Rudnick, Z., Sarnak, P.: The behaviour of eigenstates of arithmetic hyperbolic manifolds. Commun. Math. Phys. 161(1), 195–213 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sarnak, P.: Arithmetic quantum chaos. In: The Schur Lectures (1992) (Tel Aviv). Israel Math. Conf. Proc., vol. 8, pp. 183–236. Bar-Ilan Univ., Ramat Gan (1995)

    Google Scholar 

  36. Sarnak, P.: Recent progress on QUE. http://www.math.princeton.edu/sarnak/SarnakQUE.pdf (2009)

  37. Schaal, W.: On the large sieve method in algebraic number fields. J. Number Theory 2, 249–270 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shimura, G.: On the holomorphy of certain Dirichlet series. Proc. Lond. Math. Soc. (3) 31(1), 79–98 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shimura, G.: The special values of the zeta functions associated with Hilbert modular forms. Duke Math. J. 45(3), 637–679 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  40. Silberman, L., Venkatesh, A.: On quantum unique ergodicity for locally symmetric spaces. Geom. Funct. Anal. 17(3), 960–998 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Šnirel’man, A.I.: Ergodic properties of eigenfunctions. Usp. Mat. Nauk 29(6(180)), 181–182 (1974)

    Google Scholar 

  42. Soundararajan, K.: Arizona winter school lecture notes on quantum unique ergodicity and number theory. http://math.arizona.edu/~swc/aws/10/2010SoundararajanNotes.pdf (2010)

  43. Soundararajan, K.: Quantum unique ergodicity for SL2(ℤ)\ℍ. Ann. Math. 172(2), 1529–1538 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Soundararajan, K.: Weak subconvexity for central values of L-functions. Ann. Math. 172(2), 1469–1498 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. The Clarendon Press Oxford University Press, New York (1986). Edited and with a preface by D.R. Heath-Brown

    MATH  Google Scholar 

  46. Venkatesh, A.: Sparse equidistribution problems, period bounds and subconvexity. Ann. Math. 172(2), 989–1094 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Watson, T.C.: Rankin triple products and quantum chaos. arXiv:0810.0425 [math.NT] (2008)

  48. Weil, A.: Séries de Dirichlet et fonctions automorphes. In: Séminaire Bourbaki, vol. 10, Exp. No. 346, pp. 547–552. Soc. Math. France, Paris (1995)

    Google Scholar 

  49. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions: With an Account of the Principal Transcendental Functions, 4th edn. Cambridge University Press, New York (1962). Reprinted

    MATH  Google Scholar 

  50. Zelditch, S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55(4), 919–941 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, P.D. Mass equidistribution of Hilbert modular eigenforms. Ramanujan J 27, 235–284 (2012). https://doi.org/10.1007/s11139-011-9319-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-011-9319-9

Keywords

Mathematics Subject Classification (2000)

Navigation