Skip to main content
Log in

On representation of elements of a von Neumann algebra in the form of finite sums of products of projections

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We prove that each element of the von Neumann algebra without a direct abelian summand is representable as a finite sum of products of at most three projections in the algebra. In a properly infinite algebra the number of product terms is at most two. Our result gives a new proof of equivalence of the primary classification of von Neumann algebras in terms of projections and traces and also a description for the Jordan structure of the “algebra of observables” of quantum mechanics in terms of the “questions” of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Dixmier (1948) ArticleTitlePosition relative de deux variétés linéares fermées dans un espace de Hilbert Rev. Sci. Paris 86 387–399

    Google Scholar 

  2. M. Broise (1967) ArticleTitleCommutateurs dans le groupe unitaire d’un facteur J. Math. Pures Appl. 46 IssueID3 299–312

    Google Scholar 

  3. P. A. Fillmore D. M. Topping (1967) ArticleTitleOperator algebras generated by projections Duke Math. J. 34 IssueID2 333–336

    Google Scholar 

  4. P. A. Fillmore (1967) ArticleTitleSums of operators with square zero Acta. Sci. Math. 28 IssueID3–4 285–288

    Google Scholar 

  5. C. Pearcy D. M. Topping (1967) ArticleTitleSums of small numbers of idempotents Michigan Math. J. 14 IssueID4 453–465

    Google Scholar 

  6. K. Matsumoto (1984) ArticleTitleSelf-adjoint operators as a real span of 5 projections Math. Japon. 29 IssueID2 291–294

    Google Scholar 

  7. S. S. Holland SuffixJr. (1995) ArticleTitleProjections algebraically generate the bounded operators on real or quaternionic Hilbert space Proc. Amer. Math. Soc. 123 IssueID11 3361–3362

    Google Scholar 

  8. A. M. Bikchentaev (2003) ArticleTitleOn representation of linear operators in a Hilbert space in the form of finite sums of products of projections Dokl. Ross. Akad. Nauk 393 IssueID4 444–447

    Google Scholar 

  9. M. Takesaki (1979) Theory of Operator Algebras. I Springer-Verlag New York; Heidelberg; Berlin

    Google Scholar 

  10. J. Dixmier (1969) Les algèbres d’opérateurs dans l’espace Hilbertien EditionNumber2nd ed Gauthier-Villars Paris

    Google Scholar 

  11. S. Sakai (1971) C*-Algebras and W*-Algebras Springer-Verlag New York; Heidelberg; Berlin

    Google Scholar 

  12. D. Deckard C. Pearcy (1963) ArticleTitleOn matrices over ring of continuous complex valued functions on a Stonian space Proc. Amer. Math. Soc. 14 IssueID2 322–328

    Google Scholar 

  13. N. E. Wegge-Olsen (1993) K-Theory and C*-Algebras. A Friendly Approach Oxford Sci. Publ., The Clarendon Press, Oxford Univ. Press New York

    Google Scholar 

  14. S. Goldstein A. Paszkiewicz (1992) ArticleTitleLinear combinations of projections in von Neumann algebras Proc. Amer. Math. Soc. 116 IssueID1 175–183

    Google Scholar 

  15. L. W. Marcoux G. J. Murphy (1998) ArticleTitleUnitarily-invariant linear spaces in C*-algebras Proc. Amer. Math. Soc. 126 IssueID12 3597–3605

    Google Scholar 

  16. L. W. Marcoux (2002) ArticleTitleOn the linear span of the projections in certain simple C*-algebras Indiana Univ. Math. J. 51 IssueID3 753–771

    Google Scholar 

  17. A. M. Bikchentaev A. N. Sherstnev (2004) ArticleTitleProjective convex combinations in C*-algebras with the unitary factorization property Mat. Zametki 76 IssueID4 625–628

    Google Scholar 

  18. J. J. Koliha (2001) ArticleTitleRange projections of idempotents in C*-algebras Demonstratio Math. 24 IssueID1 91–103

    Google Scholar 

  19. R. V. Kadison (1984) ArticleTitleDiagonalizing matrices Amer. J. Math. 106 IssueID6 1451–1468

    Google Scholar 

  20. J. I. Fujii T. Furuta (1980) ArticleTitleHolub’s factorization and normal approximations of idempotent operators Math. Japon. 25 IssueID1 143–145

    Google Scholar 

  21. P. A. Fillmore (1969) ArticleTitleOn sums of projections J. Funct. Anal. 4 IssueID1 146–152

    Google Scholar 

  22. H. Hance-Olsen E. Størmer (1984) Jordan Operator Algebras Pitman Publ. Inc. Boston; London; Melbourne

    Google Scholar 

  23. N. Bourbaki (1965) Set Theory Mir Moscow

    Google Scholar 

  24. G. Murphy (1997) C*-Algebras and Operator Theory Faktorial Moscow

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2005 Bikchentaev A. M.

The author was supported by the Program “Universities of Russia” (Grant UR.04.01.011).

Translated from Sibirski \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath} \) Matematicheski \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath} \) Zhurnal, Vol. 46, No. 1, pp. 32–45, January–February, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bikchentaev, A.M. On representation of elements of a von Neumann algebra in the form of finite sums of products of projections. Sib Math J 46, 24–34 (2005). https://doi.org/10.1007/s11202-005-0003-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-005-0003-4

Keywords

Navigation