Skip to main content
Log in

The Critical Case of the Cramer-Lundberg Theorem on the Asymptotic Tail Behavior of the Maximum of a Negative Drift Random Walk

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study the asymptotic tail behavior of the maximum M = max{0,S n ,n ≥ = 1} of partial sums S n = ξ1 + ⋯ + ξ n of independent identically distributed random variables ξ12,... with negative mean. We consider the so-called Cramer case when there exists a β > 0 such that E e βξ1 = 1. The celebrated Cramer-Lundberg approximation states the exponential decay of the large deviation probabilities of M provided that Eξ1 e βξ1 is finite. In the present article we basically study the critical case Eξ1 e βξ1 = ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cramer H., Collective Risk Theory, Esselte, Stockholm (1955).

    Google Scholar 

  2. Asmussen S., Applied Probability and Queues, Springer-Verlag, New York (2003).

    MATH  Google Scholar 

  3. Borovkov A. A., Stochastic Processes in Queueing Theory, Springer-Verlag, New York; Berlin (1976).

    MATH  Google Scholar 

  4. Feller W., An Introduction to Probability Theory and Its Applications. Vol. 2, John Wiley, New York (1971).

    MATH  Google Scholar 

  5. Korshunov D., “On the distribution tail of the maximum of a random walk,” Stochastic Process. Appl., 72, 97–103 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  6. Bingham N. H., Goldie C. M., and Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge (1987).

    MATH  Google Scholar 

  7. Denisov D., Foss S., and Korshunov D., “Tail asymptotics for the supremum of a random walk when the mean is not finite,” Queueing Systems, 46, 15–33 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  8. Erickson K. B., “Strong renewal theorems with infinite mean,” Trans. Amer. Math. Soc., 151, 263–291 (1970).

    MATH  MathSciNet  Google Scholar 

  9. Erickson K. B., “A renewal theorem for distributions on R 1 without expectation,” Bull. Amer. Math. Soc., 77, 406–410 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  10. Garsia A. and Lamperti J., “A discrete renewal theorem with infinite mean,” Comment. Math. Helv., 37, 221–234 (1963).

    MathSciNet  MATH  Google Scholar 

  11. Williamson J. A., “Random walks and Riesz kernels,” Pacific J. Math., 25, 393–415 (1968).

    MATH  MathSciNet  Google Scholar 

  12. deBruijn N. G. and Erdos P., “On a recursion formula and some Tauberian theorems,” J. Res. Nat. Bur. Standards, 50, 161–164 (1953).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2005 Korshunov D. A.

The author was supported by the Russian Foundation for Basic Research (Grant 05-01-00810) and the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (Grant NSh-2139.2003.1).

__________

Translated from Sibirskii Matematicheskii Zhurnal, Vol. 46, No. 6, pp. 1335–1340, November–December, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korshunov, D.A. The Critical Case of the Cramer-Lundberg Theorem on the Asymptotic Tail Behavior of the Maximum of a Negative Drift Random Walk. Sib Math J 46, 1077–1081 (2005). https://doi.org/10.1007/s11202-005-0102-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-005-0102-2

Keywords

Navigation