Skip to main content
Log in

Maximum likelihood estimation in processes of Ornstein-Uhlenbeck type

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

In this article we propose a maximum likelihood methodology to estimate the parameters of a one-dimensional stationary process of Ornstein-Uhlenbeck type that is constructed via a self-decomposable distribution D. Our approach is based on the inversion of the characteristic function and the use of the classical or fractional discrete fast Fourier transform. The results are illustrated throughout an extensive simulation study. This includes the cases where D belongs to the gamma, tempered stable and normal inverse Gaussian family of distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asmussen S, Rosiński J (2001) Approximations of small jumps of Lévy processes with a view towards simulation. J Appl Proba 38: 482–493

    Article  MATH  Google Scholar 

  • Bailey DH, Swarztrauber PN (1991) The fractional fourier transform and applications. SIAM Rev 33(3): 389–404

    Article  MATH  MathSciNet  Google Scholar 

  • Barndorff-Nielsen OE (1988) Processes of normal inverse Gaussian type. Finance Stochastic 2: 41–68

    Article  MathSciNet  Google Scholar 

  • Barndorff-Nielsen OE, Shepard N (2001) Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J R Stat Soc B 63: 167–241

    Article  MATH  Google Scholar 

  • Barndorff-Nielsen OE, Shepard N (2002) Normal modified stable processes. Theory Probab Math Stat 2: 1–20

    Google Scholar 

  • Cariboni J, Schoutens W (2006) Jumps in intensity models. Technical Report 1, University Centre for Statistics, K.U. Leuven, Belgium

  • Halgreen C (1979) Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions. Z Wahrscheinlichkeit 47: 13–18

    Article  MATH  MathSciNet  Google Scholar 

  • Jiang W, Pedersen J (2003) Parameter estimation for a discretely observed stochastic volatility model with jumps in the volatility. Chi Ann Math 24: 227–238

    Article  MATH  MathSciNet  Google Scholar 

  • Jongbloed G, Van Der Meulen FH, Van Der Vaart AW (2005) Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes. Bernoulli 11: 759–791

    Article  MATH  MathSciNet  Google Scholar 

  • Karatzas I, Shreve SE (1991) Brownian motion and stochastic calculus. Springer, New York

    MATH  Google Scholar 

  • Kyprianou A (2006) Introductory lectures on fluctuations of Lévy processes with applications. Springer

  • Lukacs E (1970) Characteristic functions. Charles Griffin and Co, London

    MATH  Google Scholar 

  • Michael JR, Schucany WR, Haas RW (1976) Generating random variates using transformations with multiple roots. Am Stat 30: 88–90

    Article  MATH  Google Scholar 

  • Prause K (1999) The generalized hyperbolic model: estimation, financial derivatives, and risk measures. PhD thesis, Freiburg

  • Protter P (1990) Stochastic integration and differential equations. Springer-Verlag, Heidelberg

    MATH  Google Scholar 

  • Raible S (2000) Lévy processes in finance: theory, numerics, and empirical facts. PhD thesis, Freiburg

  • Rosiński J (2001) Contribution to the discussion of a paper by Barndorff-Nielsen and Shephard. J R Stat Soc 63: 230–231

    Google Scholar 

  • Rosiński J (2002) Tempered stable processes. In: Bandorff-Nielsen OE (ed) Miniproceddings of 2nd MaPhySto Conference on Lévy processes: Theory and applications, pp 215–220

  • Rosiński J (2007) Tempering stable processes. Stoch Process Appl 117: 677–707

    Article  MATH  Google Scholar 

  • Sato K (1999) Lévy processes and infinitely divisible distributions. Cambridge University Press

  • Schoutens W (2003) Lévy processes in finance: pricing financial derivatives. Wiley, Chichester

    Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient Heuristic for global optimization over continuous spaces. J Glob Optim 11: 341–359

    Article  MATH  MathSciNet  Google Scholar 

  • Yamazato M (1978) Unimodality of infinitely divisible distribution functions of class L. Ann Prob 6: 523–531

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Valdivieso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valdivieso, L., Schoutens, W. & Tuerlinckx, F. Maximum likelihood estimation in processes of Ornstein-Uhlenbeck type. Stat Inference Stoch Process 12, 1–19 (2009). https://doi.org/10.1007/s11203-008-9021-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-008-9021-8

Keywords

JEL codes

Navigation