Skip to main content
Log in

Exact and efficient Bayesian inference for multiple changepoint problems

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

We demonstrate how to perform direct simulation from the posterior distribution of a class of multiple changepoint models where the number of changepoints is unknown. The class of models assumes independence between the posterior distribution of the parameters associated with segments of data between successive changepoints. This approach is based on the use of recursions, and is related to work on product partition models. The computational complexity of the approach is quadratic in the number of observations, but an approximate version, which introduces negligible error, and whose computational cost is roughly linear in the number of observations, is also possible. Our approach can be useful, for example within an MCMC algorithm, even when the independence assumptions do not hold. We demonstrate our approach on coal-mining disaster data and on well-log data. Our method can cope with a range of models, and exact simulation from the posterior distribution is possible in a matter of minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert J. H. and Chib S. 1993. Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts. Journal of Business and Economic Statistics 11: 1–15.

    Google Scholar 

  • Barry D. and Hartigan J. A. 1992. Product partition models for change point problems. The Annals of Statistics 20: 260–279.

    MathSciNet  MATH  Google Scholar 

  • Barry D. and Hartigan J. A. 1993. A Bayesian analysis for change point problems. Journal of the American Statistical Society 88: 309–319.

    MathSciNet  MATH  Google Scholar 

  • Braun J. V. and Muller H. G. 1998. Statistical methods for DNA sequence segmentation. Statistical Science 13: 142–162.

    Article  MATH  Google Scholar 

  • Braun J. V., Braun R. K., and Muller H. G. 2000. Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation. Biometrika 87: 301–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Brooks S. P., Giudici P., and Roberts G. O. 2003. Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions. Journal of the Royal Statistical Society, series B 65: 3–39.

    Article  MathSciNet  MATH  Google Scholar 

  • Carlin B. P., Gelfand A. E., and Smith A. F. M. 1992. Hierarchical Bayesian analysis of changepoint problems. Applied Statistics 41: 389–405.

    MATH  Google Scholar 

  • Carpenter J., Clifford P., and Fearnhead P. 1999. An improved particle filter for non-linear problems. IEE proceedings-Radar, Sonar and Navigation 146: 2–7.

    Article  Google Scholar 

  • Chen J. and Gupta A. K. 1997. Testing and locating changepoints with application to stock prices. Journal of the American Statistical Association 92: 739–747.

    MathSciNet  MATH  Google Scholar 

  • Chib S. 1995. Marginal likelihood from the Gibbs output. Journal of the American Statistical Association 90: 1313–1321.

    MATH  MathSciNet  Google Scholar 

  • Chib S. 1996. Calculating posterior distributions and modal estimates in Markov mixture models. Journal of Econometrics 75: 79–98.

    Article  MATH  MathSciNet  Google Scholar 

  • Chib S. 1998. Estimation and comparison of multiple change-point models. Journal of Econometrics 86: 221–241.

    Article  MATH  MathSciNet  Google Scholar 

  • Fearnhead P. 2005a. Direct simulation for discrete mixture distributions. Statistics and Computing 15: 125–133.

    Article  MathSciNet  Google Scholar 

  • Fearnhead P. 2005b. Exact Bayesian curve fitting and signal segmentation. IEEE Transactions on Signal Processing 53: 2160–2166.

    Article  MathSciNet  Google Scholar 

  • Fearnhead P. and Clifford P. 2003. Online inference for hidden Markov models. Journal of the Royal Statistical Society, Series B 65: 887–899.

    Article  MathSciNet  MATH  Google Scholar 

  • Fearnhead P. and Liu Z. 2005. Online inference for multiple changepoint problems. Submitted Available from http://www.maths.lancs.ac.uk/~fearnhea/publications.

  • Fearnhead P. and Meligkotsidou L. 2004. Exact filtering for partially-observed continuous-time Markov models. Journal of the Royal Statistical Society, series B 66: 771–789.

    Article  MathSciNet  MATH  Google Scholar 

  • Green P. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82: 711–732.

    Article  MATH  MathSciNet  Google Scholar 

  • Green P. J. 2003. Transdimensional Markov chain Monte Carlo. In: Highly Structured Stochastic Systems (eds. Green P. J., Hjort N. L., and Richardson S.), Oxford University Press.

  • Hartigan J. A. 1990. Partition models. Communications in Statistics 19: 2745–2756.

    Article  MathSciNet  Google Scholar 

  • Harvey A. C. 1989. Forecasting, stuctural time series and the Kalman filter. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Jarrett R. G. 1979. A note on the intervals between coal-mining disasters. Biometrika 66: 191–3.

    Article  Google Scholar 

  • Johnson T. D., Elashoff R. M., and Harkema S. J. 2003. A Bayesian change-point analysis of electromyographic data: detecting muscle activation patterns and associated applications. Biostatistics 4: 143–164.

    Article  MATH  Google Scholar 

  • Lavielle M. and Lebarbier E. 2001. An application of MCMC methods for the multiple change-points problem. Signal Processing 81: 39–53.

    Article  MATH  Google Scholar 

  • Liu J. S. 2001. Monte Carlo strategies in scientific computing. New York: Springer.

    MATH  Google Scholar 

  • Liu J. S. and Lawrence C. E. 1999. Bayesian inference on biopolymer models. Bioinformatics 15: 38–52.

    Article  Google Scholar 

  • Lund R. and Reeves J. 2002. Detection of undocumented changepoints: A revision of the two-phase regression model. Journal of Climate 15: 2547–2554.

    Article  Google Scholar 

  • ó Ruanaidh J. J. K. and Fitzgerald W. J. 1996. Numerical Bayesion Methods Applied to Signal Processing. New York: Springer.

    Google Scholar 

  • Pievatolo A. and Green P. J. 1998. Boundary detection through dynamic polygons. Journal of the Royal Statistical Society, Series B 60: 609–626.

    Article  MathSciNet  MATH  Google Scholar 

  • Propp J. G. and Wilson D. B. 1996. Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures and Algorithms 9: 223–252.

    Article  MathSciNet  MATH  Google Scholar 

  • Punskaya E., Andrieu C., Doucet A., and Fitzgerald W. J. 2002. Bayesian curve fitting using MCMC with applications to signal segmentation. IEEE Transactions on Signal Processing 50: 747–758.

    Article  Google Scholar 

  • Raftery A. E. and Akman V. E. 1986. Bayesian analysis of a Poisson process with a change-point. Biometrika 73: 85–89.

    Article  MathSciNet  Google Scholar 

  • Ritov Y., Raz A., and Bergman H. 2002. Detection of onset of neuronal activity by allowing for heterogeneity in the change points. Journal of Neuroscience Methods 122: 25–42.

    Article  Google Scholar 

  • Scott S. L. 2002. Bayesian methods for hidden Markov models: Recursive computing in the 21st century. Journal of the American Statistical Association 97: 337–351.

    Article  MATH  MathSciNet  Google Scholar 

  • Stephens D. A. 1994. Bayesian retrospective multiple-changepoint identification. Applied Statistics 43: 159–178.

    MATH  Google Scholar 

  • Worsley K. J. 1979. On the likelihood ratio test for a shift in location of normal populations. Journal of the American Statistical Association 74: 363–367.

    MathSciNet  Google Scholar 

  • Yang T. Y. and Kuo L. 2001. Bayesian binary segmentation procedure for a Poisson process with multiple changepoints. Journal of Computational and Graphical Statistics 10: 772–785.

    Article  MathSciNet  Google Scholar 

  • Yao Y. 1984. Estimation of a noisy discrete-time step function: Bayes and empirical Bayes approaches. The Annals of Statistics 12: 1434–1447.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fearnhead, P. Exact and efficient Bayesian inference for multiple changepoint problems. Stat Comput 16, 203–213 (2006). https://doi.org/10.1007/s11222-006-8450-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-006-8450-8

Keywords

Navigation