Skip to main content
Log in

Algebraization, Parametrized Local Deduction Theorem and Interpolation for Substructural Logics over FL

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Substructural logics have received a lot of attention in recent years from the communities of both logic and algebra. We discuss the algebraization of substructural logics over the full Lambek calculus and their connections to residuated lattices, and establish a weak form of the deduction theorem that is known as parametrized local deduction theorem. Finally, we study certain interpolation properties and explain how they imply the amalgamation property for certain varieties of residuated lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AvRON, A., ‘The semantics and proof theory of linear logic’, Theoret. Comput. Sci. 57, 2–3 (1988), 161–184.

    Article  Google Scholar 

  2. BACSICH, P. D., ‘Injectivity in model theory’, Colloquium Mathematicum 25 (1972), 165–176.

    Google Scholar 

  3. BACSICH, P. D., ‘Amalgamation properties and interpolation theorems for equational theories’, Algebra Universalis 5 (1975), 45–55.

    Google Scholar 

  4. BAHLS, P., J. COLE, N. GALATOS, P. JIPSEN, and C. TSINAKIS, ‘Cancellative residu-ated lattices’, Algebra Universalis 50, 1 (2003), 83–106.

    Article  Google Scholar 

  5. BELARDINELLI, P., P. JIPSEN, and H. ONO, ‘Algebraic aspects of cut elimination’, Studio, Logica 77, 2 (2004), 209–240.

    Article  Google Scholar 

  6. BLOK, W. J., and B. JONSSON, ‘Algebraic structures for logic’, lecture series given at the symposium “Algebraic Structures for Logic”, New Mexico State University, Las Cruces, Jan. 8–12, 1999. Available on-line at http://math.nmsu.edu/ holysymp/lectures.html

  7. BLOK, W. J., and B. JONSSON, ‘Equivalence of consequence operations’, Studia Logica 91–110 of this issue.

  8. BLOK, W. J., and D. PlGOZZI, ‘Algebraizable logics’, Memoirs of the AMSv. 77, no. 396, 1989.

  9. BLOK, W. J., and D. PIGOZZI, ‘Local deduction theorems in algebraic logic’, Algebraic logic (Budapest, 1988), 75–109, Colloq. Math. Soc. Jdnos Bolyai, 54, North-Holland, Amsterdam, 1991.

    Google Scholar 

  10. BLOK, W. J., and C. J. VAN ALTEN, ‘The finite embeddability property for residuated lattices, pocrims and BCK-algebras’, Algebra Universalis 48, 3 (2002), 253–271.

    Article  Google Scholar 

  11. BLOK, W. J., and C. J. VAN ALTEN, ‘On the finite embeddability property for residuated ordered groupoids’, Trans. Amer. Math. Soc., to appear.

  12. BURRIS, S., and H. P. SANKAPPANAVAR, A Course in Univeral Algebra, Graduate Texts in Mathematics, v. 78, Springer-Verlag, 1981.

  13. BLOUNT, K., and C. TsiNAKIS, ‘The structure of residuated lattices’, Internal. J. Algebra Comput. 13, 4 (2003), 437–461.

    Article  Google Scholar 

  14. CIGNOLI, R., I. D'OTTAVIANO, and D. MUNDICI, ‘Algebraic foundations of many-valued reasoning’, Trends in Logic - Studio, Logica Library 7. Kluwer Academic Publishers, Dordrecht, 2000.

    Google Scholar 

  15. CZELAKOWSKI, J., ‘Protoalgebraic logics’, Trends in Logic - Studia Logica Library 10. Kluwer Academic Publishers, Dordrecht, 2001.

    Google Scholar 

  16. CZELAKOWSKI, J., and W. DZIOBIAK, ‘A deduction theorem schema for deductive systems of propositional logics’, Studia Logica 50 (1991), 385–390.

    Article  Google Scholar 

  17. CZELAKOWSKI J., and D. PIGOZZI, ‘Amalgamation and interpolation in abstract algebraic logic’, Models, algebras, and proofs (Bogota, 1995), 187–265, Lecture Notes in Pure and Appl. Math., 203, Dekker, New York, 1999.

    Google Scholar 

  18. FONT, J.M., R. JANSANA, and D. PiGOZZI, ‘A survey of abstract algebraic logic’, Abstract algebraic logic, Part II (Barcelona, 1997), Studia Logica 74, 1–2 (2003), 13–97.

    Article  Google Scholar 

  19. GALATOS, N., ‘Varieties of residuated lattices’, Ph.D. thesis, Vanderbilt University, 2003.

  20. GALATOS, N., ‘Equational bases for joins of residuated-lattice varieties’, Studia Logica 76, 2 (2004), 227–240.

    Article  Google Scholar 

  21. GALATOS, N., ‘Minimal varieties of residuated lattices’, Algebra Universalis 52, 2 (2005), 215–239.

    Article  Google Scholar 

  22. GALATOS, N., and H. ONO, ‘Glivenko theorems and other translations for substruc-tural logics over FL’, manuscript.

  23. GALATOS, N., and H. ONO, ‘Cut elimination and strong separation for non-associative substructural logics’, manuscript.

  24. GALATOS, N., and J. RAFTERY, ‘Adding involution to residuated structures’, Studia Logica 77, 2 (2004), 181–207.

    Article  Google Scholar 

  25. GALATOS, N., and C. TsiNAKIS, ‘Generalized MV-algebras’, Journal of Algebra 283, 1 (2005), 254–291.

    Article  Google Scholar 

  26. GALATOS, N., and C. TsiNAKIS, ‘Equivalence of consequence relations: An order-theoretic and categorical perspective’, in preparation.

  27. HAJEK, P., Metamathematics of fuzzy logic, Trends in Logic - Studia Logica Library 4. Kluwer Academic Publishers, Dordrecht, 1998.

    Google Scholar 

  28. HART J.B., L. RAFTER, and C. TSINAKIS, ‘The structure of commutative residuated lattices’, Internat. J. Algebra Comput. 12, 4 (2002), 509–524.

    Article  Google Scholar 

  29. JIPSEN, P., and C. TSINAKIS, ‘A survey of residuated lattices’, in J. Martinez (ed.), Ordered Algebraic Structures, Kluwer Academic Publish., Dordrecht, 2002, pp. 19–56.

    Google Scholar 

  30. JONSSON, B., ‘Extentions of relational structures’, The theory of models. Proceedings of the 1963 Symposium at Berkeley, North-Holland, Amsterdam, 1965.

    Google Scholar 

  31. KOWALSKI, T., and H. ONO, ‘Residuated lattices: an algebraic glimpse at logics without contraction’, monograph, March, 2002.

  32. MADARASZ, J., ‘Interpolation and amalgamation; Pushing the limits. Part I’, Studio, Logica (1998), 311–345.

  33. MAKSIMOVA, L. L., ‘Interpolation properties of superintuitionistic logics’, Studio, Logical, 4 (1979), 419–428.

    Article  Google Scholar 

  34. MUNDICI, D., ‘Bounded commutative BCK-algebras have the amalgamation property’, Mathematical, Japonica 32 (1987), 279–282.

    Google Scholar 

  35. ONO, H., and M. KOMORI, ‘Logics without the contraction rule’, J. Symbolic Logic 50 (1985), 169–201.

    Article  Google Scholar 

  36. ONO, H., ‘Interpolation and the Robinson property for logics not closed under the Boolean operations’, Algebra Universalis 23 (1986), 111–122.

    Article  Google Scholar 

  37. ONO, H., ‘Structural rules and a logical hierarchy’, Mathematical logic, Plenum, New York, 1990, pp. 95–104.

    Google Scholar 

  38. ONO, H., ‘Semantics for substructural logics’, Substructural logics (Tubingen, 1990), 259–291, Stud. Logic Comput. 2, Oxford Univ. Press, New York, 1993.

    Google Scholar 

  39. ONO, H., ‘Proof-theoretic methods in nonclassical logic - an introduction’, Theories of types and proofs (Tokyo, 1997), 207–254, MS J Mem. 2, Math. Soc. Japan, Tokyo, 1998.

  40. ONO, H., ‘Decidability and finite model property of substructural logics’, The Tbilisi Symposium on Logic, Language and Computation: selected papers, J. Ginzburg et al (eds.), pp. 263–274, Stud. Logic Lang. Inform., CSLI Publications, Stanford, CA, 1998.

    Google Scholar 

  41. ONO, H., ‘Substructural logics and residuated lattices - an introduction’, in V.F. Hendricks and J. Malinowski (eds.), Trends in Logic 20, 50 Years of Studia Logic, Kluwer Academic Publishers, 2003, pp. 177–212.

  42. OKADA, M., and K. TERUI, ‘The finite model property for various fragments of intu-itionistic linear logic’, J. Symbolic Logic 64, 2 (1999), 790–802.

    Article  Google Scholar 

  43. PAOLI, P., Substructural logics: a primer, Trends in Logic - Studia Logica Library 13. Kluwer Academic Publishers, Dordrecht, 2002.

    Google Scholar 

  44. RESTALL, G., An introduction to substructural logics, R.outledge, 2000.

  45. VAN ALTEN, C. J., ‘R.epresentable biresiduated lattices’, J. Algebra 247, 2 (2002), 672–691.

    Google Scholar 

  46. VAN ALTEN, C. J., and J. RAFTERY, ‘Rule separation and embedding theorems for logics without weakening’, Studia Logica 76, 2 (2004), 241–274.

    Article  Google Scholar 

  47. WARD, M., and R. P. DILWORTH, ‘Residuated lattices’, Trans. Amer. Math. Soc. 45 (1939), 335–354.

    Article  Google Scholar 

  48. WRONSKI, A., ‘On a form of equational interpolation property’, Foundations of logic and linguistics (Salzburg, 1983), 23–29, Plenum, New York, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Galatos.

Additional information

Dedicated to the memory of Willem Johannes Blok

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galatos, N., Ono, H. Algebraization, Parametrized Local Deduction Theorem and Interpolation for Substructural Logics over FL. Stud Logica 83, 279–308 (2006). https://doi.org/10.1007/s11225-006-8305-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-006-8305-5

Keywords

Navigation