Skip to main content
Log in

Weak and Strong Convergence Theorems for Maximal Monotone Operators in a Banach Space

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

In this paper, we introduce an iterative sequence for finding a solution of a maximal monotone operator in a uniformly convex Banach space. Then we first prove a strong convergence theorem, using the notion of generalized projection. Assuming that the duality mapping is weakly sequentially continuous, we next prove a weak convergence theorem, which extends the previous results of Rockafellar [SIAM J. Control Optim. 14 (1976), 877–898] and Kamimura and Takahashi [J. Approx. Theory 106 (2000), 226–240]. Finally, we apply our convergence theorem to the convex minimization problem and the variational inequality problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber, Y. I.: Metric and generalized projections in Banach spaces: Properties and applications, In: A. G. Kartsatos (ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York 1996, pp. 15–50.

    Google Scholar 

  2. Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei R.S.R., Bucharest, 1976.

    Google Scholar 

  3. Brézis, H. and Lions, P. L.: Produits infinis de résolvantes, Israel J. Math. 29 (1978), 329–345.

    Google Scholar 

  4. Censor, Y. and Reich, S.: Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization 37 (1996), 323–339.

    Google Scholar 

  5. Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Acad. Publ., Dordrecht, 1990.

    Google Scholar 

  6. Diestel, J.: Geometry of Banach Spaces–Selected Topics, Lecture Notes in Math. 485, Springer-Verlag, New York, 1975.

    Google Scholar 

  7. Güler, O.: On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991), 403–419.

    Google Scholar 

  8. Kamimura, S. and Takahashi, W.: Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory 106 (2000), 226–240.

    Google Scholar 

  9. Kamimura, S. and Takahashi, W.: Iterative schemes for approximating solutions of accretive operators in Banach spaces, Sci. Math. 3 (2000), 107–115.

    Google Scholar 

  10. Kamimura, S. and Takahashi, W.: Weak and strong convergence of solutions to accretive operator inclusions and applications, Set-Valued Anal. 8 (2000), 361–374.

    Google Scholar 

  11. Kamimura, S. and Takahashi, W.: Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002), 938–945.

    Google Scholar 

  12. Kohsaka, F. and Takahashi, W.: Strong convergence of an iterative sequence for maximal monotone operators in a Banach space, Abstr. Appl. Anal. (to appear).

  13. Lions, P. L.: Une méthode itérative de résolution d’une inéquation variationnelle, Israel J. Math. 31 (1978), 204–208.

    Google Scholar 

  14. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives, Rev. Franc. Informat. Rech. Opér. 4 (1970), 154–159.

    Google Scholar 

  15. Passty, G. B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl. 72 (1979), 383–390.

    Google Scholar 

  16. Reich, S.: A weak convergence theorem for the alternating method with Bregman distance, In: A. G. Kartsatos (ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, 1996, pp. 313–318.

    Google Scholar 

  17. Rockafellar, R. T.: Characterization of the subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497–510.

    Google Scholar 

  18. Rockafellar, R. T.: Convex Analysis, Princeton Univ. Press, Princeton, NJ, 1969.

    Google Scholar 

  19. Rockafellar, R. T.: On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209–216.

    Google Scholar 

  20. Rockafellar, R. T.: On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75–88.

    Google Scholar 

  21. Rockafellar, R. T.: Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), 877–898.

    Google Scholar 

  22. Solodov, M. V. and Svaiter, B. F.: Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Programing 87 (2000), 189–202.

    Google Scholar 

  23. Takahashi, W.: Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000 (Japanese).

    Google Scholar 

  24. Takahashi, W.: Nonlinear Functional Analysis–Fixed Point Theory and Its Applications, Yokohama Publishers, Yokohama, 2000.

    Google Scholar 

  25. Xu, H. K.: Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127–1138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamimura, S., Kohsaka, F. & Takahashi, W. Weak and Strong Convergence Theorems for Maximal Monotone Operators in a Banach Space. Set-Valued Anal 12, 417–429 (2004). https://doi.org/10.1007/s11228-004-8196-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-004-8196-4

Navigation