Skip to main content
Log in

Optimality Conditions for Disjunctive Programs with Application to Mathematical Programs with Equilibrium Constraints

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

We consider optimization problems with a disjunctive structure of the feasible set. Using Guignard-type constraint qualifications for these optimization problems and exploiting some results for the limiting normal cone by Mordukhovich, we derive different optimality conditions. Furthermore, we specialize these results to mathematical programs with equilibrium constraints. In particular, we show that a new constraint qualification, weaker than any other constraint qualification used in the literature, is enough in order to show that a local minimum results in a so-called M-stationary point. Additional assumptions are also discussed which guarantee that such an M-stationary point is in fact a strongly stationary point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazaraa, M.S., Shetty, C.M.: Foundations of optimization. In: Lecture Notes in Economics and Mathematical Systems, vol. 122. Springer, Berlin Heidelberg New York (1976)

    Google Scholar 

  2. Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math. Programming 86, 595–614 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Flegel, M.L., Kanzow, C.: On the Guignard constraint qualification for mathematical programs with equilibrium constraints. SIAM J. Optim. 54, 517–534 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Flegel, M.L., Kanzow, C.: A Fritz John approach to first order optimality conditions for mathematical programs with equilibrium constraints. SIAM J. Optim. 52, 277–286 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Flegel, M.L., Kanzow, C.: A direct proof for M-stationarity under MPEC-GCQ for mathematical programs with equilibrium constraints. In: Dempe, S., Kalashnikov, V. (eds.) Optimization with Multivalued Mappings: Theory, Applications and Algorithms, pp. 111–122. Springer, New York (2006)

    Chapter  Google Scholar 

  6. Flegel, M.L., Kanzow, C.: Abadie-type constraint qualification for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 124, 595–614 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gould, F.J., Tolle, J.W.: A necessary and sufficient qualification for constrained optimization. SIAM J. Appl. Math. 20, 164–172 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  8. Guignard, M.: Generalized Kuhn–Tucker conditions for mathematical programming problems in a Banach space. SIAM J. Control 7, 232–241 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  9. Henrion, R., Jourani, A., Outrata, J.V.: On the calmness of a class of multifunctions. SIAM J. Optim. 13, 603–618 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Henrion, R., Outrata, J.V.: Calmness of constraint systems with applications. Math. Programming 104, 437–464 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jeroslow, R.: Representability in mixed integer programming. I. Characterization results. Appl. Math. 17, 223–243 (1977)

    MathSciNet  Google Scholar 

  12. Lucet, Y., Ye, J.: Sensitivity analysis of the value function for optimization problems with variational inequality constraints. SIAM J. Control Optim. 40, 699–723 (2001)

    Article  MathSciNet  Google Scholar 

  13. Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge, UK (1996)

    Google Scholar 

  14. Mordukhovich, B.S.: Generalized differential calculus for nonsmooth and set-valued mappings. J. Math. Anal. Appl. 183, 250–288 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mordukhovich, B.S.: Lipschitzian stability of constraint systems and generalized equations. Nonlinear Anal. 22, 173–206 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Outrata, J.V.: Optimality conditions for a class of mathematical programs with equilibrium constraints. Math. Oper. Res. 24, 627–644 (1999)

    MATH  MathSciNet  Google Scholar 

  17. Outrata, J.V.: A generalized mathematical program with equilibrium constraints. SIAM J. Control Optim. 38, 1623–1638 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pang, J.-S., Fukushima, M.: Complementarity constraint qualifications and simplified B-stationarity conditions for mathematical programs with equilibrium constraints. Comput. Optim. Appl. 13, 111–136 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Peterson, D.W.: A review of constraint qualifications in finite-dimensional spaces. SIAM Rev. 15, 639–654 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  20. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. Math. Program. Stud. 14, 206–214 (1981)

    MATH  Google Scholar 

  21. Rockafellar, R.T., Wets, R.J.-B.: Variational analysis. In: A Series of Comprehensive Studies in Mathematics, vol. 317. Springer, Berlin Heidelberg New York (1998)

    Google Scholar 

  22. Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25, 1–22 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11, 918–936 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Scholtes, S.: Nonconvex structures in nonlinear programming. Oper. Res. 52, 368–383 (2004)

    Article  MathSciNet  Google Scholar 

  25. Spellucci, P.: Numerische Verfahren der Nichtlinearen Optimierung. Internationale Schriftenreihe zur Numerischen Mathematik, Birkhäuser, Basel, Switzerland (1993)

    Google Scholar 

  26. Stoer, J., Witzgall, C.: Convexity and optimization in finite dimensions I. In: Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol 163. Springer, Berlin Heidelberg New York (1970)

    Google Scholar 

  27. Ye, J.J.: Optimality conditions for optimization problems with complementarity constraints. SIAM J. Optim. 9, 374–387 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ye, J.J.: Constraint qualifications and necessary optimality conditions for optimization problems with variational inequality constraints. SIAM J. Optim. 10, 943–962 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ye, J.J.: Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. SIAM J. Math. Anal. 307, 350–369 (2005)

    MATH  Google Scholar 

  30. Ye, J.J., Ye, X.Y.: Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22, 977–997 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Flegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flegel, M.L., Kanzow, C. & Outrata, J.V. Optimality Conditions for Disjunctive Programs with Application to Mathematical Programs with Equilibrium Constraints. Set-Valued Anal 15, 139–162 (2007). https://doi.org/10.1007/s11228-006-0033-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-006-0033-5

Key words

Mathematics Subject Classifications (2000)

Navigation