Skip to main content
Log in

Strong Convergence of Projected Subgradient Methods for Nonsmooth and Nonstrictly Convex Minimization

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

In this paper, we establish a strong convergence theorem regarding a regularized variant of the projected subgradient method for nonsmooth, nonstrictly convex minimization in real Hilbert spaces. Only one projection step is needed per iteration and the involved stepsizes are controlled so that the algorithm is of practical interest. To this aim, we develop new techniques of analysis which can be adapted to many other non-Fejérian methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert, Y.I.: Recurrence relations and variational inequalities. Soviet Mathematics, Doklady, 27, 511–517 (1983)

    Google Scholar 

  2. Albert, Y.I., Iusem, A.N.: Extension of subgradient techniques for nonsmooth optimization in a Banach space. Set-Valued Anal. 9, 315–335 (2001)

    Article  MathSciNet  Google Scholar 

  3. Albert, Y.I., Iusem, A.N., Solodov, M.V.: On the projected subgradient method for nonsmooth convex optimization in a Hilbert space. Math. Program. 81, 23–35 (1998)

    Google Scholar 

  4. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejer monotone methods in Hilbert space. Math. Oper. Res. 26, 248–264 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bello, L., Raydan, M.: Preconditioned spectral projected-gradient method on convex sets. J. Comput. Math. 23, 225–232 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Bertsekas, D.P., Gafni, E.M.: Projection methods for variational inequalities with applications to the traffic assignment problem. Math. Program. Stud. 17, 139–159 (1982)

    MATH  MathSciNet  Google Scholar 

  7. Bertsekas, D.P.: On the Goldstein–Levitin–Polyak gradient projection method. IEEE Trans. Automat. Contr. AC-21(2), 174–184 (1976)

    Article  MathSciNet  Google Scholar 

  8. Byrne, C.L.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Problems 18, 441–453 (2004)

    Article  MathSciNet  Google Scholar 

  9. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM Publications, Philadelphia (1983)

    MATH  Google Scholar 

  10. Correa, R., Lemaréchal, C.: Convergence of some algorithms for convex minimization. Math. Program. 62, 261–275 (1993)

    Article  Google Scholar 

  11. Ekeland, I., Themam, R.: Convex analysis and variational problems. In: Classic in Applied Mathematics, p. 28. SIAM, Philadelphia (1999)

    Google Scholar 

  12. Ermoliev, Y.M.: Methods for solving nonlinear extremal problems. Cybernet. 2, 1–17 (1966)

    Article  Google Scholar 

  13. Hager, W.W., Park, S.: The gradient projection method with exact line search. J. Glob. Optim. 30, 103–118 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Halpern, B.: Fixed points of nonexpanding maps. Bull. Amer. Math. Soc. 73, 957–961 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  15. Iusem, A.N.: On the convergence properties of the projected gradient method for convex optimization. Comput. Appl. Math. 22(1), 37–52 (2003)

    Article  MathSciNet  Google Scholar 

  16. Khobotov, E.N.: A modification of the extragradient method for the solution of variational inequalities and some optimization problems. Zh. Vychisl. Mat. Mat. Fiz. 27, 1462–1473 (1987)

    MathSciNet  Google Scholar 

  17. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Matecon 12, 747–756 (1976)

    MATH  Google Scholar 

  18. Marcotte, P.: Applications of Khobotov’s algorithm to variational and network equlibrium problems. Inform. Syst. Oper. Res. 29, 258–270 (1991)

    MATH  Google Scholar 

  19. Maingé, P.E., Moudafi, A.: Strong convergence of an iterative method for hierarchical fixed-point problems. Pacific J. Optim. 3(3), 529–538 (2007)

    MATH  Google Scholar 

  20. Moudafi, A.: Viscosity approximations methods for fixed point problems. J. Math. Anal. Appl. 241, 46–55 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nadezhkina, N., Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz continuous monotone mappings. SIAM J. Optim. 16(4), 1230–1241 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Solodov, M.V., Tseng, P.: Modified projection methods for monotone variational inequalities. SIAM J. Control Optim. 34(5), 1814–1834 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Solodov, M.V., Zavriev, S.K.: Error stability properties of generalized gradient-type algorithms. J. Optim. Theory Appl. 98, 663–680 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Solodov, M.V.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37(3), 756–776 (1999)

    Article  MathSciNet  Google Scholar 

  25. Xiu, N., Wang, C., Kong, L.: A note on the gradient projection method with exact stepsize rule. J. Comput. Math. 25(2), 221–230 (2007)

    MATH  MathSciNet  Google Scholar 

  26. Yamada, I., Ogura, N.: Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25(7–8), 619–655 (2004)

    MATH  MathSciNet  Google Scholar 

  27. Zeng, L.C., Yao, J.C.: Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwan. J. Math. 10(5), 1293–1303 (2006)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul-Emile Maingé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maingé, PE. Strong Convergence of Projected Subgradient Methods for Nonsmooth and Nonstrictly Convex Minimization. Set-Valued Anal 16, 899–912 (2008). https://doi.org/10.1007/s11228-008-0102-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-008-0102-z

Keywords

Mathematics Subject Classifications (2000)

Navigation