Skip to main content
Log in

Symmetric jump processes and their heat kernel estimates

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

We survey the recent development of the DeGiorgi-Nash-Moser-Aronson type theory for a class of symmetric jump processes (or equivalently, a class of symmetric integro-differential operators). We focus on the sharp two-sided estimates for the transition density functions (or heat kernels) of the processes, a priori Hölder estimate and parabolic Harnack inequalities for their parabolic functions. In contrast to the second order elliptic differential operator case, the methods to establish these properties for symmetric integro-differential operators are mainly probabilistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stroock D W. Diffusion semigroup corresponding to uniformly elliptic divergence form operator. Lecture Notes in Math, 1321: 316–347 (1988)

    Article  MathSciNet  Google Scholar 

  2. Bertoin J. Lévy Processes. Cambridge: Cambridge University Press, 1996

    MATH  Google Scholar 

  3. Janicki A, Weron A. Simulation and Chaotic Behavior of α-Stable Processes. New York: Dekker, 1994

    Google Scholar 

  4. Klafter J, Shlesinger M F, Zumofen G. Beyond Brownian motion. Physics Today, 49: 33–39 (1996)

    Article  Google Scholar 

  5. Samorodnitsky G, Taqqu M S. Stable Non-Gaussian Random Processes. New York-London: Chapman & Hall, 1994

    MATH  Google Scholar 

  6. Caffarelli L A, Salsa S, Silvestre Luis. Regularity estimates for the solution and the free boundary to theobstacle problem for the fractional Laplacian. Invent Math, 171(1): 425–461 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Silvestre L. Hölder estimates for solutions of integro differential equations like the fractional Laplace. Indiana Univ Math J, 55: 1155–1174 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Blumenthal R M, Getoor R K. Some theorems on stable processes. Trans Amer Math Soc, 95: 263–273 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kolokoltsov V. Symmetric stable laws and stable-like jump-diffusions. Proc London Math Soc, 80: 725–768 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bass R F, Levin D A. Transition probabilities for symmetric jump processes. Trans Amer Math Soc, 354: 2933–2953 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen Z-Q, Kumagai T. Heat kernel estimates for stable-like processes on d-sets. Stochastic Process Appl, 108: 27–62 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen Z-Q, Kumagai T. Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab Theory Related Fields, 140: 277–317 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen Z-Q, Kim P, Kumagai T. Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math Ann, 342: 833–883 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hurst S R, Platen E, Rachev S T. Option pricing for a logstable asset price model. Math Comput Modelling, 29: 105–119 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Matacz A. Financial modeling and option theory with the truncated Lévy process. Int J Theor Appl Finance, 3(1): 143–160 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Barlow M T, Bass R F, Chen Z-Q, et al. Non-local Dirichlet forms and symmetric jump processes. Trans Amer Math Soc, 361: 1963–1999 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chen Z-Q, Kumagai T. A priori Hölder estimate, parabolic Harnack inequality and heat kernel estimates for diffusions with jumps. Revista Mathemática Iberoamericana, to appear (2009)

  18. Zhang Q S. The boundary behavior of heat kernels of Dirichlet Laplacians. J Differential Equations, 182: 416–430 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chen Z-Q, Kim P, Song R. Heat kernel estimates for Dirichlet fractional Laplacian. J European Math Soc, to appear (2009)

  20. Chen Z-Q, Kim P, Song R. Two-sided heat kernel estimates for censored stable-like processes. Probab Theory Related Fields, to appear (2009)

  21. Chen Z-Q, Kim P, Song R. Sharp heat kernel estimates for relativistic stable processes. Preprint, 2009

  22. Bass R F. SDEs with jumps. Notes for Cornell Summer School 2007. http://www.math.uconn.edu/~bass/cornell.pdf

  23. Chen Z-Q. Multidimensional symmetric stable processes. Korean J Comput Appl Math, 6: 227–266 (1999)

    MATH  MathSciNet  Google Scholar 

  24. Benjamini I, Chen Z-Q, Rohde S. Boundary trace of reflecting Brownian motions. Probab Theory Relat Fields, 129: 1–17 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Bass R F, Levin D A. Harnack inequalities for jump processes. Potential Anal, 17: 375–388 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Chen Z-Q, Song R. Drift transforms and Green function estimates for discontinuous processes. J Funct Anal, 201: 262–281 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Herbst I W, Sloan D. Perturbation of translation invariant positive preserving semigroups on L 2(ℝN). Trans Amer Math Soc, 236: 325–360 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  28. Meyer P A. Renaissance, recollements, mélanges, ralentissement de processus de Markov. Ann Inst Fourier, 25: 464–497 (1975)

    Google Scholar 

  29. Ikeda N, Nagasawa M, Watanabe S. A construction of Markov process by piecing out. Proc Japan Acad Ser A Math Sci, 42: 370–375 (1966)

    MATH  MathSciNet  Google Scholar 

  30. Barlow M T, Grigor’yan A, Kumagai T. Heat kernel upper bounds for jump processes and the first exit time. J Reine Angew Math, 626: 135–157 (2009)

    MATH  MathSciNet  Google Scholar 

  31. Song R, Vondraĉek Z. Parabolic Harnack inequality for the mixture of Brownian motion and stable process. Tohoku Math J, 59: 1–19 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Carlen E A, Kusuoka S, Stroock D W. Upper bounds for symmetric Markov transition functions. Ann Inst Heri Poincaré-Probab Statist, 23: 245–287 (1987)

    MathSciNet  Google Scholar 

  33. Chen Z-Q, Song R. Estimates on Green functions and Poisson kernels of symmetric stable processes. Math Ann, 312: 465–601 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kulczycki T. Properties of Green function of symmetric stable processes. Probab Math Stat, 17: 381–406 (1997)

    MathSciNet  Google Scholar 

  35. Chen Z-Q, Tokle J. Global heat kernel estimates for fractional Laplacians in un bounded open sets. Preprint, 2009

  36. Bogdan K, Burdzy K, Chen Z Q. Censored stable processes. Probab Theory Related Fields, 127: 89–152 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Chen Z-Q, Kim P. Green function estimate for censored stable processes. Probab Theory Related Fields, 124: 595–610 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Qing Chen.

Additional information

This work was supported by National Science Foundation of USA (Grant No. DMS-0600206)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, ZQ. Symmetric jump processes and their heat kernel estimates. Sci. China Ser. A-Math. 52, 1423–1445 (2009). https://doi.org/10.1007/s11425-009-0100-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-009-0100-0

Keywords

MSC(2000)

Navigation