Skip to main content
Log in

Diffusions with holding and jumping boundary

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Consider a family of probability measures {ν ξ } on a bounded open region D ⊂ ℝd with a smooth boundary and a positive parameter set {β ξ }, all indexed by ξ∂D. For any starting point inside D, we run a diffusion until it first exits D, at which time it stays at the exit point ξ for an independent exponential holding time with rate β ξ and then leaves ξ by a jump into D according to the distribution ν ξ . Once the process jumps inside, it starts the diffusion afresh. The same evolution is repeated independently each time the process jumped into the domain. The resulting Markov process is called diffusion with holding and jumping boundary (DHJ), which is not reversible due to the jumping. In this paper we provide a study of DHJ on its generator, stationary distribution and the speed of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben-Ari I, Pinsky R G. Spectral analysis of a family of second-order elliptic operators with nonlocal boundary condition indexed by a probability measure. J Funct Anal, 2007, 251: 122–140

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Ari I, Pinsky R G. Ergodic behavior of diffusion with random jumps from the boundary. Stoch Proc Appl, 2009, 119: 864–881

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernt O. Stochastic Differential Equations, the sixth edition. New York: Springer-Verlag, 2002

    Google Scholar 

  4. Burzy K, Holyst R, March P. A Fleming-Viot particle representation of the Dirichlet Laplacian. Comm Math Phys, 2000, 214: 679–703

    Article  MathSciNet  Google Scholar 

  5. Bieniek M, Burdzy K, Finch S. Non-extinction of a Fleming-Viot particle model. Preprint

  6. Chen Z Q. Symmetric jump processes and their heat kernel estimates. Sci China Ser A, 2009, 52: 1423–1445

    Article  MathSciNet  MATH  Google Scholar 

  7. Chung K L, Zhao Z. From Brownian Motion to Schrodinger’s Equation. Berlin: Springer-Verlag Berlin Heidelberg, 1995

    Book  Google Scholar 

  8. Down D, Meyn P, Tweedie R L. Exponential and uniform ergodicity of Markov processes. Ann Probab, 1995, 23: 1671–1691

    Article  MathSciNet  MATH  Google Scholar 

  9. Ethier S, Kurtz T. Markov Processes: Characterization and Convergence. In: Wiley Series in Probability and Mathematical Statistics. New York: John Wiley, Sons Inc, 1986

    Google Scholar 

  10. Ethier S N, Kurtz T G. Coupling and ergodic theorems for Fleming-Viot processes. Ann of Probab, 1998, 26: 533–561

    Article  MathSciNet  MATH  Google Scholar 

  11. Feller W. The parabolic differential equations and the associated semi-groups of transformations. Ann of Math, 1952, 55: 468–519

    Article  MathSciNet  MATH  Google Scholar 

  12. Feller W. Diffusion processes in one dimension. Trans Amer Math Soc, 1954, 17: 1–31

    Article  MathSciNet  Google Scholar 

  13. Feller W. Generalized second order differential operators and their lateral conditions. Illinois J Math, 1957, 1: 459–504

    MathSciNet  MATH  Google Scholar 

  14. Grigorescu I, Kang M. Brownian motion on the figure eight. J Theory Probab, 2002, 15: 817–844

    Article  MathSciNet  MATH  Google Scholar 

  15. Grigorescu I, Kang M. Ergodic ptoperty of multidimensional Brownian motion with rebirth. Electron J Probab, 2007, 12: 1299–1322

    Article  MathSciNet  MATH  Google Scholar 

  16. Hou Z, Liu G. Markov Skeleton Processes and Their Applications. Beijing/Hong Kong: Science Press and International Press, 2005

    Google Scholar 

  17. Ito K, Mckean H P. Diffusion Processes and Their Sample Paths. Berlin: Springer-Verlag, 1965

    Book  MATH  Google Scholar 

  18. Karlin S, Taylor H M. A Second Course in Stochastic Processes. New York: Academic Press, 1981

    MATH  Google Scholar 

  19. Karatzas I, Shreve S E. Brownian Motion and Stochastic Calculus. New York: Springer-Verlag, 1991

    MATH  Google Scholar 

  20. Kolb M, Wubker A. On the spectral gap of Brownian motion with jump boundary. Electron J Probab, 2011, 43: 1214–1237

    MathSciNet  Google Scholar 

  21. Kosygina E. Brownian flow on a finite interval with jump boundary conditions. Disc Cont Dyn Syst Ser B, 2006, 6: 867–880

    Article  MathSciNet  MATH  Google Scholar 

  22. Leung Y, Li W V, Rakesh. Spectral analysis of Brownian motion with jump boundary. Proc Amer Math Soc, 2008, 136: 4427–4436

    Article  MathSciNet  MATH  Google Scholar 

  23. Leung Y, Li W V. Fastest rate of convergence for Brownian motion with jump boundary. Preprint, 2011

  24. Liggett T M. Interacting Particle Systems. New York: Springer-Verlag, 1985

    Book  MATH  Google Scholar 

  25. Mandl P. Analytical Treatment of One-dimensional Markov Processes. New York: Springer-Verlag, 1968

    MATH  Google Scholar 

  26. Meyn P, Tweedie R L. Markov Chains and Stochastic Stability. New York: Springer-Verlag, 1993

    Book  MATH  Google Scholar 

  27. Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag, 1983

    Book  MATH  Google Scholar 

  28. Pinsky R G. Positive Harmonic Functions and Diffusion, Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press, 1995

    Book  Google Scholar 

  29. Rudin W. Real and complex analysis, second edition, McGraw-Hill Series in Higher Mathematics. New York: McGraw-Hill Book Co., 1974

    Google Scholar 

  30. Taira K. Diffusion Processes and Partial Differential Equations. New York: Academic Press, 1988

    MATH  Google Scholar 

  31. Venttsel A D. On boundary conditions for multidimensional diffusion processes. Theory Probab Appl, 1959, 4: 164–177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, J., Li, W.V. Diffusions with holding and jumping boundary. Sci. China Math. 56, 161–176 (2013). https://doi.org/10.1007/s11425-012-4416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-012-4416-9

Keywords

MSC(2010)

Navigation