Skip to main content
Log in

Time to most recent common ancestor for stationary continuous state branching processes with immigration

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

Motivated by sample path decomposition of the stationary continuous state branching process with immigration, a general population model is considered using the idea of immortal individual. We compute the joint distribution of the random variables: the time to the most recent common ancestor (MRCA), the size of the current population, and the size of the population just before MRCA. We obtain the bottleneck effect as well. The distribution of the number of the oldest families is also established. These generalize the results obtained by Y. T. Chen and J. F. Delmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham R, Delmas J F. The forest associated with the record process on a Lévy tree. Stochastic Process Appl, 2013, 123: 3497–3517

    Article  MathSciNet  Google Scholar 

  2. Abraham R, Delmas J F, Hoscheit P. Exit times for an increasing Lévy tree-valued process. arXiv: 1202.5463

  3. Aldous D. The continuum random tree I. Ann. Probab., 1991, 19(1): 1–28

    Article  MATH  MathSciNet  Google Scholar 

  4. Aldous D. The continuum random tree III. Ann Probab, 1993, 21(1): 248–289

    Article  MATH  MathSciNet  Google Scholar 

  5. Aliev S A. A limit theorem for the Galton-Watson branching processes with immigration. Ukrainian Math J, 1985, 37: 535–438

    Article  MATH  Google Scholar 

  6. Aliev S A, Shchurenkov V M. Transitional phenomena and the convergence of Galton-Watson processes to Jiřina processes. Theory Probab Appl, 1982, 27: 472–485

    Article  MATH  Google Scholar 

  7. Berestycki J, Berestycki N, Limic V. A small time coupling between Λ-coalescent and branching processes. arXiv: 1101.1875

  8. Chen Y T, Delmas J F. Smaller population size at the MRCA time for stationary branching processes. Ann Probab, 2012, 40(5): 2034–2068

    Article  MATH  MathSciNet  Google Scholar 

  9. Duquesne T, Le Gall J F. Random Trees, Lévy Processes and Spatial Branching Processes. Paris: Astérisque, 2002

    MATH  Google Scholar 

  10. Duquesne T, Le Gall J F. Probabilistic and fractal aspects of Lévy trees. Probab Theory Related Fields, 2005, 131(4): 553–603

    Article  MATH  MathSciNet  Google Scholar 

  11. Evans S N, Ralph P L. Dynamics of the time to the most recent common ancestor in a large branching population. Ann Appl Probab, 2010, 20(1): 1–25

    Article  MATH  MathSciNet  Google Scholar 

  12. Fitzsimmons P J, Fristedt B, Shepp L A. The set of real numbers left uncovered by random covering intervals. Z Wahrsch Verw Gebiete, 1985, 70: 175–189

    Article  MATH  MathSciNet  Google Scholar 

  13. Fitzsimmons P J, Taksar M. Stationary regenerative sets and subordinators. Ann Probab, 1988, 16(3): 1299–1305

    Article  MATH  MathSciNet  Google Scholar 

  14. Foucart C, Bravo G U. Local extinction in continuous state branching processes with immigration. arXiv: 1211.3699

  15. Foucart C, Hénard O. Stable continuous-state branching processes with immigration and Beta-Fleming-Viot processes with immigration. Electron J Probab, 2013, 23: 1–21

    Google Scholar 

  16. Jirina M. Stochastic branching processes with continuous state space. Czech Math J, 1958, 83(8): 292–312

    MathSciNet  Google Scholar 

  17. Kawazu K, Watanabe S. Branching processes with immigration and related limit theorems. Theory Probab Appl, 1971, 83(8): 36–54

    Article  Google Scholar 

  18. Kingman J F C. On the genealogy of large populations. J Appl Probab, 1982, 19: 27–43

    Article  MathSciNet  Google Scholar 

  19. Kingman J F C. The coalescent. Stochastic Process Appl, 1982, 13(3): 235–248

    Article  MATH  MathSciNet  Google Scholar 

  20. Lambert A. Coalescence times for the branching process. Adv Appl Probab, 2007, 35(4): 1071–1089

    Article  Google Scholar 

  21. Lamperti J. The limit of a sequence of branching processes. Probab Theory Related Fields, 1967, 7(4): 271–288

    MATH  MathSciNet  Google Scholar 

  22. Li Z. A limit theorem for discrete Galton-Watson branching processes with immigration. J Appl Probab, 2006, 43: 289–295

    Article  MATH  MathSciNet  Google Scholar 

  23. Li Z. Measure-valued branching Markov processes. Berlin: Springer, 2011

    Book  MATH  Google Scholar 

  24. Li Z. Continuous-state Branching Processes. Lecture Notes, Beijing Normal University. arXiv: 1202.3223

  25. Pitman J. Coalescents with multiple collisions. Ann Probab, 1999, 27: 1870–1902

    Article  MATH  MathSciNet  Google Scholar 

  26. Sagitov S. The general coalescent with asynchronous mergers of ancestral lines. J Appl Probab, 1999, 36: 1116–1125

    Article  MATH  MathSciNet  Google Scholar 

  27. Taksar M I. Regenerative sets on real line. In: Azéma J, Yor M, eds. Séminaire de Probabilités XIV, 1978/79. Lecture Notes in Mathematics, Vol 784. New York: Springer, 1980, 437–474

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Bi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, H. Time to most recent common ancestor for stationary continuous state branching processes with immigration. Front. Math. China 9, 239–260 (2014). https://doi.org/10.1007/s11464-014-0354-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-014-0354-x

Keywords

MSC

Navigation