Skip to main content
Log in

Strong law of large numbers for supercritical superprocesses under second moment condition

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

Consider a supercritical superprocess X = {X t , t ⩾ 0} on a locally compact separable metric space (E,m). Suppose that the spatial motion of X is a Hunt process satisfying certain conditions and that the branching mechanism is of the form

$$\psi (x,\lambda ) = - a(x)\lambda + b(x)\lambda ^2 + \int_{(0, + \infty )} {(e^{ - \lambda y} - 1 + \lambda y)} n(x,dy), x \in E,\lambda > 0,$$

where \(a \in B_b (E)\), \(b \in B_b^ + (E)\), and n is a kernel from E to (0,+∞) satisfying sup xE +∞0 y 2 n(x, dy) < +∞. Put \(T_t f(x) = \mathbb{P}_{\delta _x } \left\langle {f,X_t } \right\rangle\). Suppose that the semigroup {T t ; t ⩾ 0} is compact. Let λ 0 be the eigenvalue of the (possibly non-symmetric) generator L of {T t } that has the largest real part among all the eigenvalues of L, which is known to be real-valued. Let ϕ 0 and \(\hat \varphi _0\) be the eigenfunctions of L and \(\hat L\) (the dual of L) associated with λ 0, respectively. Assume λ 0 > 0. Under some conditions on the spatial motion and the ϕ 0-transform of the semigroup {T t }, we prove that for a large class of suitable functions f,

$$\mathop {\lim }\limits_{t \to + \infty } e^{ - \lambda _0 t} \left\langle {f,X_t } \right\rangle = W_\infty \int_E {\hat \varphi _0 (y)f(y)m(dy), \mathbb{P}_\mu - a.s.,}$$

for any finite initial measure µ on E with compact support, where W is the martingale limit defined by \(W_\infty : = \lim _{t \to + \infty } e^{ - \lambda _0 t} \left\langle {\varphi _0 ,X_t } \right\rangle\). Moreover, the exceptional set in the above limit does not depend on the initial measure µ and the function f.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bass R F, Chen Z -Q. Brownian motion with singular drift. Ann Probab, 2013, 31: 791–817

    MathSciNet  Google Scholar 

  2. Chen Z -Q, Kim P, Song R. Dirichlet heat kernel estimates for fractional Laplacian with gradient perturbation. Ann Probab, 2012, 40: 2483–2538

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen Z -Q, Kim P, Song R. Dirichlet heat kernel estimates for rotationally symmetric Lévy processes. Proc Lond Math Soc, 2014, 109: 90–120

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen Z -Q, Kim P, Song R. Stability of Dirichlet heat kernel estimates for non-local operators under Feynman-Kac perturbations. Trans Amer Math Soc, 2015, 367: 5237–5270

    Article  MathSciNet  Google Scholar 

  5. Chen Z -Q, Kim P, Song R. Dirichlet heat kernel estimates for subordinate Brownian motions with Gaussian components. J Reine Angew Math, Ahead of print, DOI:10.1515/crelle-2013-0090

  6. Chen Z -Q, Kumagai T. A priori Hölder estimate, parabolic Harnack principle and heat kernel estimates for diffusions with jumps. Rev Mat Iberoam, 2010, 26: 551–589

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen Z -Q, Ren Y -X, Wang H. An almost sure scaling limit theorem for Dawson-Watanabe superprocesses. J Funct Anal, 2008, 254: 1988–2019

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen Z -Q, Yang T. Dirichlet heat kernel estimates for fractional Laplacian under non-local perturbation. Preprint, 2015, arXiv: 1503.05302

    Google Scholar 

  9. Davies E B, Simon B. Ultracontractivity and the kernel for Schrödinger operators and Dirichlet Laplacians. J Funct Anal, 1984, 59: 335–395

    Article  MATH  MathSciNet  Google Scholar 

  10. Eckhoff M, Kyprianou A E, Winkel M. Spine, skeletons and the strong law of large numbers for superdiffusion. Ann Probab (To appear), arXiv: 1309.6196

  11. Engländer J. Law of large numbers for superdiffusions: The non-ergodic case. Ann Inst Henri Poincaré Probab Stat, 2009, 45: 1–6

    Article  MATH  Google Scholar 

  12. Engländer J, Harris S C, Kyprianou A E. Strong law of large numbers for branching diffusions. Ann Inst Henri Poincaré Probab Stat, 2010, 46(1): 279–298

    Article  MATH  Google Scholar 

  13. Engländer J, Turaev D. A scaling limit theorem for a class of superdiffusions. Ann Probab, 2002, 30: 683–722

    Article  MATH  MathSciNet  Google Scholar 

  14. Engländer J, Winter A. Law of large numbers for a class of superdiffusions. Ann Inst Henri Poincaré Probab Stat, 2006, 42: 171–185

    Article  MATH  Google Scholar 

  15. Kim P, Song R. Two-sided estimates on the density of Brownian motion with singular drift. Illinois J Math, 2006, 50: 635–688

    MATH  MathSciNet  Google Scholar 

  16. Kim P, Song R. On dual processes of non-symmetric diffusions with measure-valued drifts. Stochastic Process Appl, 2008, 118: 790–817

    Article  MATH  MathSciNet  Google Scholar 

  17. Kim P, Song R. Intrinsic ultracontractivity of non-symmetric diffusions with measurevalued drifts and potentials. Ann Probab, 2008, 36: 1904–1945

    Article  MATH  MathSciNet  Google Scholar 

  18. Kim P, Song R. Stable process with singular drift. Stochastic Process Appl, 2014, 124: 2479–2516

    Article  MATH  MathSciNet  Google Scholar 

  19. Kim P, Song R. Dirichlet heat kernel estimates for stable processes with singular drift in unbounded C 1,1 open sets. Potential Anal, 2014, 41: 555–581

    Article  MATH  MathSciNet  Google Scholar 

  20. Kouritzin M A, Ren Y -X. A strong law of large numbers for super-stable Processes. Stochastic Process Appl, 2014, 121: 505–521

    Article  MathSciNet  Google Scholar 

  21. Li Z. Measure-valued Branching Markov Processes. Heidelberg: Springer, 2011

    Book  MATH  Google Scholar 

  22. Liu R -L, Ren Y -X, Song R. Strong law of large numbers for a class of superdiffusions. Acta Appl Math, 2013, 123: 73–97

    Article  MATH  MathSciNet  Google Scholar 

  23. Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer, 1983

    Book  MATH  Google Scholar 

  24. Ren Y -X, Song R, Zhang R. Central limit theorems for supercritical superprocesses. Stochastic Process Appl, 2015, 125: 428–457

    Article  MATH  MathSciNet  Google Scholar 

  25. Ren Y -X, Song R, Zhang R. Central limit theorems for supercritical branching nonsymmetric Markov processes. Ann Probab (to appear), arXiv: 1404.0116

  26. Ren Y -X, Song R, Zhang R. Functional central limit theorems for supercritical superprocesses. Preprint, 2014, arXiv: 1410.1598

    Google Scholar 

  27. Ren Y -X, Song R, Zhang R. Limit theorems for some critical superprocesses. Preprint, 2014, arXiv: 1403.1342

    Google Scholar 

  28. Sato K -I. Lévy Processes and Infinitely Divisible Distribution. Cambridge: Cambridge University Press, 1999

    Google Scholar 

  29. Schaefer H H. Banach Lattices and Positive Operators. New York: Springer, 1974

    Book  MATH  Google Scholar 

  30. Stroock D W. Probability Theory. An Analytic View. 2nd ed. Cambridge: Cambridge University Press, 2011

    MATH  Google Scholar 

  31. Wang L. An almost sure limit theorem for super-Brownian motion. J Theoret Probab, 2010, 23: 401–416

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Xia Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZQ., Ren, YX., Song, R. et al. Strong law of large numbers for supercritical superprocesses under second moment condition. Front. Math. China 10, 807–838 (2015). https://doi.org/10.1007/s11464-015-0482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-015-0482-y

Keywords

MSC

Navigation