Skip to main content

Advertisement

Log in

Lyapunov Functions and Global Stability for SIR and SIRS Epidemiological Models with Non-Linear Transmission

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Lyapunov functions for two-dimension SIR and SIRS compartmental epidemic models with non-linear transmission rate of a very general form f(S,I) constrained by a few biologically feasible conditions are constructed. Global properties of these models including these with vertical and horizontal transmission, are thereby established. It is proved that, under the constant population size assumption, the concavity of the function f(S,I) with respect to the number of the infective hosts I ensures the uniqueness and the global stability of the positive endemic equilibrium state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R.M., May, R.M., 1991. Infectious Diseases in Humans: Dynamics and Control. Oxford University Press, Oxford.

    Google Scholar 

  • Barbashin, E.A., 1970. Introduction to the Theory of Stability. Wolters-Noordhoff, Groningen.

    MATH  Google Scholar 

  • Briggs, C.J., Godfray, H.C.J., 1995. The dynamics of Insect-pathogen interactions in stage-structured populations. Am. Nat. 145(6), 855–887.

    Article  Google Scholar 

  • Brown, G.C., Hasibuan, R., 1995. Conidial discharge and transmission efficiency of Neozygites floridana, an Entomopathogenic fungus infecting two-spotted spider mites under laboratory conditions. J. Invertebr. Pathol. 65, 10–16.

    Google Scholar 

  • Busenberg, S.N., Cooke, K., 1993. Vertically Transmitted Diseases. Springer, Berlin.

    MATH  Google Scholar 

  • Capasso, V., Serio, G., 1978. A generalisation of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42, 43–61.

    Article  MATH  MathSciNet  Google Scholar 

  • Derrick, W.R., van den Driessche, P., 1993. A disease transmission model in a nonconstant population. J. Math. Biol. 31, 495–512.

    Article  PubMed  MathSciNet  MATH  Google Scholar 

  • Derrick, W.R., van den Driessche, P., 2003. Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population. Discret Contin. Dyn. Syst. Ser. B 3(2), 299–309.

    Article  MATH  MathSciNet  Google Scholar 

  • Feng, Z., Thieme, H.R., 2000a. Endemic models with arbitrarily distributed periods of infection I: Fundamental properties of the model. SIAM J. Appl. Math. 61(3), 803–833.

    Article  MATH  MathSciNet  Google Scholar 

  • Feng, Z., Thieme, H.R., 2000b. Endemic models with arbitrarily distributed periods of infection II: Fast disease dynamics and permanent recovery. SIAM J. Appl. Math. 61(3), 983–1012.

    Article  MATH  MathSciNet  Google Scholar 

  • Goh, B.-S., 1980. Management and Analysis of Biological Populations. Elsevier Science, Amsterdam.

    Google Scholar 

  • Hethcote, H.W., 2000. The Mathematics of infectious diseases. SIAM Rev. 42(4), 599–653.

    Article  MATH  MathSciNet  Google Scholar 

  • Hethcote, H.W., Lewis, M.A., van den Driessche, P., 1989. An epidemiological model with delay and a nonlinear incidence rate. J. Math. Biol. 27, 49–64.

    PubMed  MATH  MathSciNet  Google Scholar 

  • Hethcote, H.W., van den Driessche, P., 1991. Some epidemiological models with nonlinear incidence. J. Math. Biol. 29, 271–287.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

  • Korobeinikov, A., 2004. Lyapunov functions and global properties for SEIR and SEIS epidemic models. MMB IMA 21, 75–83.

    Google Scholar 

  • Korobeinikov, A., 2004. Global properties of basic virus dynamics models. Bull. Math. Biol. 66(4), 879–883.

    Article  PubMed  MathSciNet  Google Scholar 

  • Korobeinikov, A., Maini, P.K., 2004. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Math. Biosci. Eng. 1(1), 57–60.

    MATH  MathSciNet  Google Scholar 

  • Korobeinikov, A., Maini, P.K., 2005. Nonlinear incidence and stability of infectious disease models. MMB IMA 22, 113–128.

    Google Scholar 

  • Korobeinikov, A., Wake, G.C., 2002. Lyapunov functions and global stability for SIR, SIRS and SIS epidemiological models. Appl. Math. Lett. 15(8), 955–961.

    Article  MATH  MathSciNet  Google Scholar 

  • La Salle, J., Lefschetz, S., 1961. Stability by Liapunov's Direct Method. Academic Press, New York.

    MATH  Google Scholar 

  • Li, M.Y., Muldowney, J.S., van den Driessche, P., 1999. Global stability of SEIRS models in epidemiology. Canadian Appl. Math. Quort. 7.

  • Liu, W.M., Levin, S.A., Isawa, Y., 1986. Influence of nonlinear incidence rates upon the behaviour of SIRS epidemiological models. J. Math. Biol. 23, 187–204.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

  • Liu, W.M., Hethcote, H.W., Levin, S.A., 1987. Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25, 359–380.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

  • Regoes, R.R., Elbert, D., Bonhoeffer, S., 2002. Dose-dependent infection rates of parasites produce the Allee effect in epidemiology. Proc. R. Soc. Lond. B 269, 271–279.

    Google Scholar 

  • Takeuchi, Y., 1996. Global Dynamical Properties of Lotka-Volterra Systems. World Scientific, Singapore.

    MATH  Google Scholar 

  • van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Korobeinikov.

Additional information

AMS Classification 92D30 (primary), 34D20 (secondary)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korobeinikov, A. Lyapunov Functions and Global Stability for SIR and SIRS Epidemiological Models with Non-Linear Transmission. Bull. Math. Biol. 68, 615–626 (2006). https://doi.org/10.1007/s11538-005-9037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9037-9

Keywords

Navigation