Skip to main content

Advertisement

Log in

Global Properties of Infectious Disease Models with Nonlinear Incidence

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider global properties for the classical SIR, SIRS and SEIR models of infectious diseases, including the models with the vertical transmission, assuming that the horizontal transmission is governed by an unspecified function f(S,I). We construct Lyapunov functions which enable us to find biologically realistic conditions sufficient to ensure existence and uniqueness of a globally asymptotically stable equilibrium state. This state can be either endemic, or infection-free, depending on the value of the basic reproduction number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R.M., May, R.M., 1991. Infectious Diseases in Humans: Dynamics and Control. Oxford University Press, Oxford.

    Google Scholar 

  • Barbashin, E.A., 1970. Introduction to the Theory of Stability. Wolters–Noordhoff, Groningen.

    MATH  Google Scholar 

  • Briggs, C.J., Godfray, H.C.J., 1995. The dynamics of insect-pathogen interactions in stage-structured populations. Am. Nat. 145(6), 855–887.

    Article  Google Scholar 

  • Brown, G.C., Hasibuan, R., 1995. Conidial discharge and transmission efficiency of Neozygites floridana, an Entomopathogenic fungus infecting two-spotted spider mites under laboratory conditions. J. Invertebr. Pathol. 65, 10–16.

    Article  Google Scholar 

  • Busenberg, S., Cooke, K., 1993. Vertically Transmitted Diseases: Models and Dynamics. Springer, Berlin.

    MATH  Google Scholar 

  • Capasso, V., Serio, G., 1978. A generalisation of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42, 43–61.

    Article  MATH  MathSciNet  Google Scholar 

  • Derrick, W.R., van den Driessche, P., 2003. Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population. Discret. Contin. Dyn. Syst. Ser. B 3, 299–309.

    Article  MATH  Google Scholar 

  • Feng, Z., Thieme, H.R., 2000. Endemic models with arbitrarily distributed periods of infection I: fundamental properties of the model. SIAM J. Appl. Math. 61(3), 803–833.

    Article  MATH  MathSciNet  Google Scholar 

  • Hethcote, H.W., 2000. The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653.

    Article  MATH  MathSciNet  Google Scholar 

  • Hethcote, H.W., van den Driessche, P., 1991. Some epidemiological models with nonlinear incidence. J. Math. Biol. 29, 271–287.

    Article  MATH  MathSciNet  Google Scholar 

  • Hethcote, H.W., Lewis, M.A., van den Driessche, P., 1989. An epidemiological model with delay and a nonlinear incidence rate. J. Math. Biol. 27, 49–64.

    MATH  MathSciNet  Google Scholar 

  • Korobeinikov, A., 2006. Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull. Math. Biol. 68(3), 615–626.

    Article  MathSciNet  Google Scholar 

  • Korobeinikov, A., Maini, P.K., 2004. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Math. Biosci. Eng. 1(1), 57–60.

    MATH  MathSciNet  Google Scholar 

  • Korobeinikov, A., Maini, P.K., 2005. Nonlinear incidence and stability of infectious disease models. Math. Med. Biol. A J. IMA 22, 113–128.

    Article  MATH  Google Scholar 

  • La Salle, J., Lefschetz, S., 1961. Stability by Liapunov’s Direct Method. Academic, New York.

    MATH  Google Scholar 

  • Li, M.Y., Muldowney, J.S., van den Driessche, P., 1999. Global stability of SEIRS models in epidemiology. Can. Appl. Math. Quort., 7.

  • Liu, W.M., Hethcote, H.W., Levin, S.A., 1987. Dynamical behaviour of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25, 359–380.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, W.M., Levin, S.A., Iwasa, Y., 1986. Influence of nonlinear incidence rates upon the behaviour of SIRS epidemiological models. J. Math. Biol. 23, 187–204.

    Article  MATH  MathSciNet  Google Scholar 

  • Lyapunov, A.M., 1992. The General Problem of the Stability of Motion. Taylor & Francis, London.

    MATH  Google Scholar 

  • van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Korobeinikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korobeinikov, A. Global Properties of Infectious Disease Models with Nonlinear Incidence. Bull. Math. Biol. 69, 1871–1886 (2007). https://doi.org/10.1007/s11538-007-9196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9196-y

Keywords

Mathematics Subject Classification (2000)

Navigation