Skip to main content
Log in

Ratio-Dependent Predator-Prey Models of Interacting Populations

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Ratio-dependent predator-prey models are increasingly favored by both the theoretical and experimental ecologists as a more suitable alternative to describe predator-prey interactions when the predators hunt seriously. In this article, the classical Bazykin’s model is modified with ratio-dependent functional response. Stability and bifurcation situations of the system are observed. Since the ratio-dependent model always has difficult dynamics in the vicinity of the origin, the analytical behavior of the system near origin is studied completely. It is found that paradox of enrichment can happen to this system under certain parameter values, although the functional response is ratio-dependent. The parametric space for Turing spatial structure is determined. We also conclude that competition among the predator population might be beneficial for predator species under certain circumstances. Finally, ecological interpretations of our results are presented in the discussion section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abrams, P.A., 1994. The fallacies of ‘Ratio-dependent’ predation. Ecology 75(6), 1842–1850.

    Article  Google Scholar 

  • Akcakaya, H.R., Arditi, R., Gingburg, L.R., 1995. Ratio-dependent predation: an abstraction that works. Ecology 76, 995–1004.

    Article  Google Scholar 

  • Alekseev, V.V., 1973. Effect of saturation factor on dynamics of predator prey system. Biofizika 18, 922–926.

    Google Scholar 

  • Alonso, D., Bartumeus, F., Catalan, J., 2002. Mutual interference between predators can give rise to Turing spatial Patterns. Ecology 83(1), 28–34.

    Article  Google Scholar 

  • Arditi, R., Ginzburg, L.R., 1989. Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326.

    Article  Google Scholar 

  • Arino, O., Mikram, J., Chattopadhyay, J., 2004. Infection on prey population may act as a biological control in ratio-dependent predator-prey model. Nonlinearity 17, 1101–1116.

    Article  MATH  MathSciNet  Google Scholar 

  • Bazykin, A.D., 1998. Nonlinear Dynamics of Interacting Populations. Series on Nonlinear Science. Ser. A, vol. 11. World Scientific, Singapore. Chua, L.O. (Ed.), Original Russian version: Bazykin, A.D. Nauka, Moscow (1985).

    Google Scholar 

  • Berezovskaya, F., Karev, G., Arditi, R., 2001. Parametric analysis of ratio-dependent predator-prey model. J. Math. Biol. 43, 221–246.

    Article  MATH  MathSciNet  Google Scholar 

  • Cosner, C., Angelis, D.L., Ault, J.S., Olson, D.B., 1999. Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56, 65–75.

    Article  MATH  Google Scholar 

  • Freedman, H.I., 1980. Deterministic Mathematical Method in Population Ecology. Dekker, New York.

    Google Scholar 

  • Getz, W.M., 1984. Population dynamics-a per capita resource approach. J. Theor. Biol. 108, 623–643.

    Article  MathSciNet  Google Scholar 

  • Greenhalgh, D., Haque, M., 2007. A predator-prey model with disease in the prey species only. Math. Methods Appl. Sci. 30, 911–929.

    Article  MATH  MathSciNet  Google Scholar 

  • Gutierrez, A.P., 1992. The physiological basis of ratio-dependent predator-prey theory: a metabolic pool model of Nicholson’s blowflies as an example. Ecology 73, 1552–1563.

    Article  Google Scholar 

  • Hale, J., 1969. Ordinary Differential Equations. Wiley-Interscience, New York.

    MATH  Google Scholar 

  • Hanski, I., 1991. The functional response of predator: worries about scale. TREE 6, 141–142.

    Google Scholar 

  • Haque, M., Venturino, E., 2007. An eco-epidemiological model with disease in predator: the ratio-dependent case. Math. Methods Appl. Sci. 30, 1791–1809.

    Article  MATH  MathSciNet  Google Scholar 

  • Hsu, S.B., Hwang, T.W., Kuang, Y., 2001a. Rich dynamics of ratio-dependent one prey two predators model. J. Math. Biol. 43, 377–396.

    Article  MATH  MathSciNet  Google Scholar 

  • Hsu, S.B., Hwang, T.W., Kuang, Y., 2001b. Global analysis of the Michaelis Menten type ratio-dependent predator-prey system. J. Math. Biol. 42, 489–506.

    Article  MATH  MathSciNet  Google Scholar 

  • Hsu, S.B., Hwang, T.W., Kuang, Y., 2003. A ratio-dependent food chain model and its application to biological control. Math. Biosci. 181, 55–83.

    Article  MATH  MathSciNet  Google Scholar 

  • Jost, C., Arditi, R., 2000. Identifying predator-prey process from time series. Theor. Popul. Biol. 57, 325–337.

    Article  MATH  Google Scholar 

  • Jost, C., Arino, O., Arditi, R., 1999. About deterministic extinction in ratio-dependent predator-prey models. Bull. Math. Biol. 61, 19–32.

    Article  Google Scholar 

  • Kuang, Y., 1999. Rich dynamics of Gause-type ratio-dependent predator-prey system. Fields Inst. Commun. 21, 325–337.

    MathSciNet  Google Scholar 

  • Kuang, Y., Bertta, E., 1998. Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36, 389–406.

    Article  MATH  MathSciNet  Google Scholar 

  • Luckinbill, L.S., 1973. Coexistence in laboratory populations of Paramecium Aurelia and its predator Didinium nasutum. Ecology 54, 1320–1327.

    Article  Google Scholar 

  • May, R.M., 1974. Stability and Complexity in Model Eco-System. Princeton University Press, Princeton.

    Google Scholar 

  • Murray, J.D., 1989. Mathematical Biology. Biomathematics, vol. 19. Springer, Berlin.

    MATH  Google Scholar 

  • Tanner, J.T., 1975. The stability and intrinsic growth rates of prey and predator populations. Ecology 56, 855–867.

    Article  Google Scholar 

  • Thieme, H., 1997. Mathematical Biology. An Introduction via Selected Topics. Lecture Note at Arizona State University.

  • Sotomayor, J., 1973. Generic bifurcation of dynamical systems. In: Peixoto, M.M. (Ed.), Dynamical System. Academic Press, San Diego.

    Google Scholar 

  • Xiao, D., Ruan, S., 2001. Global dynamics of ratio-dependent predator-prey system. J. Math. Biol. 43, 268.

    Article  MATH  MathSciNet  Google Scholar 

  • Xiao, Y., Chen, L., 2002. A ratio-dependent predator-prey model with disease in the prey. Appl. Math. Comput. Arch. 131, 397–414.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mainul Haque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haque, M. Ratio-Dependent Predator-Prey Models of Interacting Populations. Bull. Math. Biol. 71, 430–452 (2009). https://doi.org/10.1007/s11538-008-9368-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9368-4

Keywords

Navigation