Skip to main content
Log in

On the Probability of Random Genetic Mutations for Various Types of Tumor Growth

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this work, we consider the problem of estimating the probability for a specific random genetic mutation to be present in a tumor of a given size. Previous mathematical models have been based on stochastic methods where the tumor was assumed to be homogeneous and, on average, growing exponentially. In contrast, we are able to obtain analytical results for cases where the exponential growth of cancer has been replaced by other, arguably more realistic types of growth of a heterogeneous tumor cell population. Our main result is that the probability that a given random mutation will be present by the time a tumor reaches a certain size, is independent of the type of curve assumed for the average growth of the tumor, at least for a general class of growth curves. The same is true for the related estimate of the expected number of mutants present in a tumor of a given size, if mutants are indeed present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abkowitz, J. L., Persik, M. T., Shelton, G. H., Ott, R. L., Kiklevich, J. V., Catlin, S. N., & Guttorp, P. (1995). Behavior of hematopoietic stem cells in a large animal. Proc. Natl. Acad. Sci. USA, 92, 2031–2035.

    Article  Google Scholar 

  • Bellomo, N., Li, N. K., & Maini, P. K. (2008). On the foundations of cancer modeling: selected topics, speculations, and perspectives. Math. Models Methods Appl. Sci., 18, 593–646.

    Article  MathSciNet  MATH  Google Scholar 

  • Booth, C., & Potten, C. S. (2000). Gut instincts: Thoughts on intestinal epithelial stem cells. J. Clin. Invest., 105, 1493–1499.

    Article  Google Scholar 

  • Coldman, A. J., & Goldie, J. H. (1985). Role of mathematical modeling in protocol formulation in cancer chemotherapy. Cancer Treat. Rep., 69(10), 1041–1048.

    Google Scholar 

  • Coldman, A. J., & Goldie, J. H. (1986). A stochastic model for the origin and treatment of tumors containing drug-resistant cells. Bull. Math. Biol., 48(3–4), 279–292.

    MathSciNet  MATH  Google Scholar 

  • Gaffney, E. A. (2005). The mathematical modelling of adjuvant chemotherapy scheduling: incorporating the effects of protocol rest phases and pharmacokinetics. Bull. Math. Biol., 67(3), 563–611.

    Article  MathSciNet  Google Scholar 

  • Giebel, B., Zhang, T., Beckmann, J., Spanholtz, J., Wernet, P., Ho, A. D., & Punzel, M. (2006). Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division. Blood, 107, 2146–2152.

    Article  Google Scholar 

  • Goldie, J. H., & Coldman, A. J. (1979). A mathematical model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep., 63(11–12), 1727–1733.

    Google Scholar 

  • Goldie, J. H., & Coldman, A. J. (1983a). A model for resistance of tumor cells to cancer chemotherapeutic agents. Math. Biosci., 65, 291–307.

    Article  MATH  Google Scholar 

  • Goldie, J. H., & Coldman, A. J. (1983b). Quantitative model for multiple levels of drug resistance in clinical tumors. Cancer Treat. Rep., 67(10), 923–931.

    Google Scholar 

  • Goldie, J. H., & Coldman, A. J. (1998). Drug resistance in cancer: mechanisms and models. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Goldie, J. H., Coldman, A. J., & Gudaskas, G. A. (1982). Rationale for the use of alternating non-cross resistant chemotherapy. Cancer Treat. Rep., 66(3), 439–449.

    Google Scholar 

  • Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.

    Google Scholar 

  • Harnevo, L. E., & Agur, Z. (1991). The dynamics of gene amplification described as a multitype compartmental model and as a branching process. Math. Biosci., 103(1), 115–138.

    Article  MathSciNet  MATH  Google Scholar 

  • Harnevo, L. E., & Agur, Z. (1993). Use of mathematical models for understanding the dynamics of gene amplification. Mutat. Res., 292(1), 17–24.

    Google Scholar 

  • Iwasa, Y., Nowak, M. A., & Michor, F. (2006). Evolution of resistance during clonal expansion. Genetics, 172, 2557–2566.

    Article  Google Scholar 

  • Kimmel, M., & Axelrod, D. E. (1990). Mathematical models of gene amplification with applications to cellular drug resistance and tumorigenicity. Genetics, 125(3), 633–644.

    Google Scholar 

  • Komarova, N. (2006). Stochastic modeling of drug resistance in cancer. J. Theor. Biol., 239(3), 351–366.

    Article  MathSciNet  Google Scholar 

  • Komarova, N., & Wodarz, D. (2005). Drug resistance in cancer: principles of emergence and prevention. Proc. Natl. Acad. Sci. U.S.A., 102(27), 9714–9719.

    Article  Google Scholar 

  • Komarova, N., & Wodarz, D. (2009). Combination therapies against chronic myeloid leukemia: short-term versus long-term strategies. Cancer Res., 69(11), 4904–4910.

    Article  Google Scholar 

  • Komarova, N., Katouli, A. A., & Wodarz, D. (2009). Combination of two but not three current targeted drugs can improve therapy of chronic myeloid leukemia. PLoS ONE, 4(2), e4423.

    Article  Google Scholar 

  • Luria, S. E., & Delbruck, M. (1943). Mutation of bacteria from virus sensitivity to virus resistance. Genetics, 28, 491–511.

    Google Scholar 

  • McKenzie, J. L., Gan, O. I., Doedens, M., Wang, J. C., & Dick, J. E. (2006). Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nat. Immunol., 7, 1225–1233.

    Article  Google Scholar 

  • Moolgavkar, S. H. (1986). Carcinogenesis modeling: from molecular biology to epidemiology. Annu. Rev. Public Health, 7, 151–169.

    Article  Google Scholar 

  • Morrison, S. J., & Kimble, J. (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 441, 1068–1074.

    Article  Google Scholar 

  • Murray, J. M. (1997). The optimal scheduling of two drugs with simple resistance for a problem in cancer chemotherapy. IMA J. Math. Appl. Med. Biol., 14, 283–303.

    Article  MATH  Google Scholar 

  • Nakasu, S., Nakasu, Y., Fukami, T., Jito, J., & Nozaki, K. (2010). Growth curve analysis of asymptomatic and symptomatic meningiomas. J. Neurooncology. doi:10.1007/s11060-010-0319-1.

    Google Scholar 

  • Panetta, J. C., & Adam, J. (1995). A mathematical model of cycle-specific chemotherapy. Math. Comput. Model., 22, 67–82.

    Article  MathSciNet  MATH  Google Scholar 

  • Retsky, J. (2011). Metronomic chemotherapy was originally designed and first used in 1994 for early stage cancer—why s it taking so long to proceed? Bioequiv. Availab. 3(4). doi:10.4172/jbb.100000e6.

  • Teicher, B. A. (2006). Cancer drug resistance. Totowa: Humana Press.

    Book  Google Scholar 

  • Tomasetti, C., & Levy, D. (2010a). An elementary approach to modeling drug resistance in cancer. Math. Biosci. Eng., 7(4), 905–918.

    Article  MathSciNet  Google Scholar 

  • Tomasetti, C., & Levy, D. (2010b). Drug resistance always depends on the turnover rate. In K. E. Herold & W. E. Bentley (Eds.), IFMBE proceedings (Vol. 32). New York: Springer.

    Google Scholar 

  • Tomasetti, C., & Levy, D. (2010c). Role of symmetric and asymmetric division of stem cells in developing drug resistance. Proc. Natl. Acad. Sci. USA, 107(39), 16766–16771.

    Article  Google Scholar 

  • Wu, M., Kwon, H. Y., Rattis, F., Blum, J., Zhao, C., Ashkenazi, R., Jackson, T. L., Gaiano, N., Oliver, T., & Reya, T. (2007). Imaging hematopoietic precursor division in real time. Cell Stem Cell, 1, 541–554.

    Article  Google Scholar 

  • Yatabe, Y., Tavare, S., & Shibata, D. (2001). Investigating stem cells in human colon by using methylation patterns. Proc. Natl. Acad. Sci. USA, 98, 10839–10844.

    Article  Google Scholar 

  • Zheng, Q. (1999). Progress of a half century in the study of the Luria–Delbrück distribution. Math. Biosci., 162, 1–32.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Professor Dmitry Dolgopyat for his helpful discussions and the reviewers for their valuable comments. The work of CT was supported in part by the National Institute of Health under Grant T32 CA009337, by the joint National Science Foundation/National Institute of General Medical Sciences program under Grant DMS-0758374 and by the National Cancer Institute under Grant R01CA130817.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Tomasetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomasetti, C. On the Probability of Random Genetic Mutations for Various Types of Tumor Growth. Bull Math Biol 74, 1379–1395 (2012). https://doi.org/10.1007/s11538-012-9717-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9717-1

Keywords

Navigation