Skip to main content
Log in

On the asymptotic behavior of variable exponent power–law functionals and applications

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

We study, via Γ-convergence, the asymptotic behavior of several classes of power–law functionals acting on fields belonging to variable exponent Lebesgue spaces and which are subject to constant rank differential constraints. Applications of the Γ-convergence results to the derivation and analysis of several models related to polycrystal plasticity arising as limiting cases of more flexible power–law models are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bocea, M., Mihăilescu, M.: Γ-Convergence of power–law functionals with variable exponents. Nonlinear Anal (2010). doi:10.1016/j.na.2010.03.004

  2. Bocea M., Nesi V.: Γ-Convergence of power–law functionals, variational principles in L , and applications. SIAM J. Math. Anal. 39, 1550–1576 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bocea, M., Popovici, C.: Variational principles in L with applications to antiplane shear and plane stress plasticity. Preprint (2008)

  4. Braides A.: Γ-Convergence for Beginners. Oxford Lecture Series in Mathematics and its Applications, vol. 22. Oxford University Press, Oxford (2002)

    Google Scholar 

  5. Braides A., Defranceschi A.: Homogenization of Multiple Integrals. Oxford Lecture Series in Mathematics and its Applications 12. Oxford University Press, Oxford (1998)

    Google Scholar 

  6. Chen Y., Levine S., Rao M.: Variable exponent, linear growth functionals in image processing. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dacorogna B.: Weak continuity and weak lower semicontinuity for nonlinear functionals. Lecture Notes in Mathematics, vol. 922. Springer, New York (1982)

    Google Scholar 

  8. Dal Maso G.: An Introduction to Γ-convergence. Progress in Nonlinear Differential Equations and Their Applications, vol. 8. Birkäuser, Boston (1993)

    Google Scholar 

  9. De Giorgi E.: Sulla convergenza di alcune succesioni di integrali del tipo dell’area. Rend. Mat. 8, 277–294 (1975)

    MathSciNet  MATH  Google Scholar 

  10. De Giorgi E., Franzoni T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58, 842–850 (1975)

    MathSciNet  MATH  Google Scholar 

  11. Diening, L.: Theoretical and numerical results for electrorheological fluids. Ph.D. Thesis, University of Frieburg, Germany (2002)

  12. Edmunds D.E., Lang J., Nekvinda A.: On L p(x) norms. Proc. R. Soc. Lond. Ser. A 455, 219–225 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Edmunds D.E., Rákosník J.: Density of smooth functions in W k, p(x) (Ω). Proc. R. Soc. Lond. Ser. A 437, 229–236 (1992)

    Article  MATH  Google Scholar 

  14. Edmunds D.E., Rákosník J.: Sobolev embeddings with variable exponent. Stud. Math. 143, 267–293 (2000)

    MATH  Google Scholar 

  15. Fonseca I., Müller S.: A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30, 1355–1390 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garroni A., Nesi V., Ponsiglione M.: Dielectric breakdown: optimal bounds. Proc. R. Soc. Lond. A 457, 2317–2335 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Garroni A., Kohn R.V.: Some three-dimensional problems related to dielectric breakdown and polycrystal plasticity. Proc. R. Soc. Lond. Ser. A 459, 2613–2625 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goldsztein G.H.: Rigid perfectly plastic two-dimensional polycrystals. Proc. R. Soc. Lond. Ser. A 457, 2789–2798 (2001)

    Article  MATH  Google Scholar 

  19. Goldsztein G.H.: Two-dimensional rigid polycrystals whose grains have one ductile direction. Proc. R. Soc. Lond. Ser. A 459, 1949–1968 (2003)

    Article  MATH  Google Scholar 

  20. Kohn R.V., Little T.D.: Some model problems of polycrystal plasticity with deficient basic crystals. SIAM J. Appl. Math. 59, 172–197 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kováčik O., Rákosník J.: On spaces L p(x) and W 1,p(x). Czechoslovak Math. J. 41, 592–618 (1991)

    MathSciNet  Google Scholar 

  22. Mihăilescu M., Pucci P., Rădulescu V.: Nonhomogeneous boundary value problems in anisotropic Sobolev spaces. C. R. Acad. Sci. Paris, Ser. I 345, 561–566 (2007)

    MATH  Google Scholar 

  23. Mihăilescu M., Pucci P., Rădulescu V.: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl. 340, 687–698 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mihăilescu M., Rădulescu V.: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. Lond. Ser. A 462, 2625–2641 (2006)

    Article  MATH  Google Scholar 

  25. Murat F.: Compacité par compensation: condition necessaire et suffisante de continuité faible sous une hypothése de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8(4), 68–102 (1981)

    MathSciNet  Google Scholar 

  26. Musielak J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)

    Google Scholar 

  27. Rajagopal K.R., Ružička M.: Mathematical modelling of electrorheological fluids. Contin. Mech. Thermodyn. 13, 59–78 (2001)

    Article  MATH  Google Scholar 

  28. Ružička M.: Flow of Shear Dependent Electrorheological Fluids: Unsteady Space Periodic Case. Applied Nonlinear Analysis, pp. 485–504. Kluwer/Plenum, New York (1999)

    Google Scholar 

  29. Ružička M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2002)

    Google Scholar 

  30. Samko S., Vakulov B.: Weighted Sobolev theorems with variable exponent for spatial and spherical potential operators. J. Math. Anal. Appl. 310, 229–246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Knops, R. (ed.) Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, vol. IV, Pitman Res. Notes Math., vol. 39, pp. 136–212, Longman, Harlow (1979)

  32. Tartar L.: The compensated compactness method applied to systems of conservation laws. In: Ball, J.M. (eds) Systems of Nonlinear Partial Differential Equations, D. Riebel, Dordrecht (1983)

    Google Scholar 

  33. Zhikov V.V.: Meyers-type estimates for solving the non linear Stokes system. Differ. Equ. 33(1), 107–114 (1997)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Bocea.

Additional information

Communicated by L. Carbone.

The research of M. Bocea was partially supported by the US National Science Foundation under Grant No. DMS-0806789. M. Mihăilescu has been partially supported by Grant CNCSIS 79/2007 “Degenerate and Singular Nonlinear Processes”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocea, M., Mihăilescu, M. & Popovici, C. On the asymptotic behavior of variable exponent power–law functionals and applications. Ricerche mat. 59, 207–238 (2010). https://doi.org/10.1007/s11587-010-0081-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-010-0081-x

Keywords

Mathematics Subject Classification (2000)

Navigation