Skip to main content
Log in

Proper Generalized Decomposition for Multiscale and Multiphysics Problems

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This paper is a review of the developments of the Proper Generalized Decomposition (PGD) method for the resolution, using the multiscale/multiphysics LATIN method, of the nonlinear, time-dependent problems ((visco)plasticity, damage, …) encountered in computational mechanics. PGD leads to considerable savings in terms of computing time and storage, and makes engineering problems which would otherwise be completely out of range of industrial codes accessible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akel S, Nguyen QS (1989) Determination of the limit response in cyclic plasticity. In: Proceedings of 2nd international conference on computational plasticity. Barcelone, Spain, pp 639–650

    Google Scholar 

  2. Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newton Fluid Mech 139(3):153–176

    Article  MATH  Google Scholar 

  3. Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids: Part II: Transient simulation using space-time separated representations. J Non-Newton Fluid Mech 144(2–3):98–121

    Article  MATH  Google Scholar 

  4. Beckert A (2000) Coupling fluid (CFD) and structural (FE) models using finite interpolation elements. Aerosp Sci Technol 47:13–22

    Article  Google Scholar 

  5. Belytschko T, Smolinski P, Liu WK (1985) Stability of multi-time step partitioned integrators for first-order finite element systems. Comput Methods Appl Mech Eng 49(3):281–297

    Article  MATH  MathSciNet  Google Scholar 

  6. Blom FJ (1998) A monolithic fluid-structure interaction algorithm applied to the piston problem. Comput Methods Appl Mech Eng 167:369–391

    Article  MATH  MathSciNet  Google Scholar 

  7. Bottasso CL (2002) Multiscale temporal integration. Comput Methods Appl Mech Eng 191(25–26):2815–2830

    Article  MATH  MathSciNet  Google Scholar 

  8. Caignot A, Ladevèze P, Néron D, Durand J-F (2010) Virtual testing for the prediction of damping in joints. Eng Comput 27(5):621–644

    Article  Google Scholar 

  9. Champaney L, Cognard J-Y, Ladevèze P (1999) Modular analysis of assemblages of three-dimensional structures with unilateral contact conditions. Comput Struct 73:249–266

    Article  MATH  Google Scholar 

  10. Champaney L, Boucard P-A, Guinard S (2008) Adaptive multi-analysis strategy for contact problems with friction: application to aerospace bolted joints. Comput Mech 42(2):305–316

    Article  MATH  Google Scholar 

  11. Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Curr Sci 78(7):808–817

    Google Scholar 

  12. Chinesta F, Ammar A, Lemarchand F, Beauchene P, Boust F (2008) Alleviating mesh constraints: Model reduction, parallel time integration and high resolution homogenization. Comput Methods Appl Mech Eng 197:400–413

    Article  MATH  MathSciNet  Google Scholar 

  13. Cognard J-Y, Ladevèze P (1993) A large time increment approach for cyclic plasticity. Int J Plast 9:114–157

    Article  Google Scholar 

  14. Combescure A, Gravouil A (2002) A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis. Comput Methods Appl Mech Eng 191:1129–1157

    Article  MATH  Google Scholar 

  15. Comte F, Maitournam H, Burry P, Lan NTM (2006) A direct method for the solution of evolution problems. C R Mec 334(5):317–322

    MATH  Google Scholar 

  16. Coussy O (2004) Poromechanics. Wiley, New York

    Google Scholar 

  17. Cresta P, Allix O, Rey C, Guinard S (2007) Nonlinear localization strategies for domain decomposition methods in structural mechanics. Comput Methods Appl Mech Eng 196(8):1436–1446

    Article  MATH  MathSciNet  Google Scholar 

  18. Devries F, Dumontet F, Duvaut G, Léné F (1989) Homogenization and damage for composite structures. Int J Numer Methods Eng 27:285–298

    Article  MATH  Google Scholar 

  19. Dureisseix D, Farhat C (2001) A numerically scalable domain decomposition method for the solution of frictionless contact problems. Int J Numer Methods Eng 50:2643–2666

    Article  MATH  Google Scholar 

  20. Dureisseix D, Ladevèze P, Néron D, Schrefler BA (2003) A multi-time-scale strategy for multiphysics problems: application to poroelasticity. Int J Multiscale Comput Eng 1(4):387–400

    Article  Google Scholar 

  21. Dureisseix D, Ladevèze P, Schrefler BA (2003) A computational strategy for multiphysics problems—application to poroelasticity. Int J Numer Methods Eng 56(10):1489–1510

    Article  MATH  Google Scholar 

  22. Farhat C, Chandesris M (2003) Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications. Int J Numer Methods Eng 58:1397–1434

    Article  MATH  MathSciNet  Google Scholar 

  23. Farhat C, Lesoinne M (2000) Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Comput Methods Appl Mech Eng 182:499–515

    Article  MATH  Google Scholar 

  24. Farhat C, Lesoinne M, LeTallec P (1998) Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput Methods Appl Mech Eng 157:95–114

    Article  MATH  MathSciNet  Google Scholar 

  25. Faucher V, Combescure A (2003) A time and space mortar method for coupling linear modal subdomains and non-linear subdomains in explicit structural dynamics. Comput Methods Appl Mech Eng 192:509–533

    Article  MATH  Google Scholar 

  26. Felippa CA, Geers TL (1988) Partitioned analysis for coupled mechanical systems. Eng Comput 5:123–133

    Article  Google Scholar 

  27. Felippa CA, Park KC (1980) Staggered transient analysis procedures for coupled mechanical systems: formulation. Comput Methods Appl Mech Eng 24:61–111

    Article  MATH  Google Scholar 

  28. Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190:3247–3270

    Article  MATH  Google Scholar 

  29. Feyel F (2003) A multilevel finite element (FE2) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192:3233–3244

    Article  MATH  Google Scholar 

  30. Fish J, Chen W (2001) Uniformly valid multiple spatial-temporal scale modeling for wave propagation in heterogeneous media. Mech Compos Mater Struct 8:81–99

    Article  Google Scholar 

  31. Fish J, Shek K, Pandheeradi M, Shephard MS (1997) Computational plasticity for composite structures based on mathematical homogenization: Theory and practice. Comput Methods Appl Mech Eng 148:53–73

    Article  MATH  MathSciNet  Google Scholar 

  32. Golub GH, Loan CFV (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  33. Gosselet P, Chiaruttini V, Rey C, Feyel F (2004) A monolithic strategy based on an hybrid domain decomposition method for multiphysic problems. Application to poroelasticity. Rev Eur Élém Finis 13(5/7):523–534

    Article  MATH  Google Scholar 

  34. Gravouil A, Combescure A (2001) Multi-time-step explicit implicit method for non-linear structural dynamics. Int J Numer Methods Eng 50:199–225

    Article  MATH  Google Scholar 

  35. Gravouil A, Combescure A (2003) Multi-time-step and two-scale domain decomposition method for non-linear structural dynamics. Int J Numer Methods Eng 58:1545–1569

    Article  MATH  Google Scholar 

  36. Guennouni T (1988) On a computational method for cycling loading: the time homogenization. Math Model Numer Anal 22(3):417–455 (in French)

    MATH  MathSciNet  Google Scholar 

  37. Guidault P, Allix O, Champaney L, Cornuault S (2008) A multiscale extended finite element method for crack propagation. Comput Methods Appl Mech Eng 197(5):381–399

    Article  MATH  Google Scholar 

  38. Gunzburger MD, Peterson JS, Shadid JN (2007) Reduced-order modeling of time-dependent pdes with multiple parameters in the boundary data. Comput Methods Appl Mech Eng 196(4–6):1030–1047

    Article  MATH  MathSciNet  Google Scholar 

  39. Hibbitt, Karlson, Sorensen (eds) (1996) Abaqus/standard—user’s manual, vol I, pp 6.4.2–2 and 6.6.1–4

  40. Huet C (1990) Application of variational concepts to size effects in elastic heterogeneous bodies. J Mech Phys Solids 38(6):813–841

    Article  MathSciNet  Google Scholar 

  41. Hughes TJR (1995) Multiscale phenomena: Green’s function, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods. Comput Methods Appl Mech Eng 127:387–401

    Article  MATH  Google Scholar 

  42. Jolliffe I (1986) Principal component analysis. Springer, New York

    Google Scholar 

  43. Karhunen K (1943) Uber lineare methoden für wahrscheinigkeitsrechnung. Ann Acad Sci Fenn Ser A1 Math Phys 37:3–79

    Google Scholar 

  44. Kouznetsova V, Geers M, Brekelmans W (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260

    Article  MATH  Google Scholar 

  45. Kunisch K, Xie L (2005) Pod-based feedback control of the burgers equation by solving the evolutionary HJB equation. Comput Math Appl 49(7–8):1113–1126

    Article  MATH  MathSciNet  Google Scholar 

  46. Ladevèze J (1985). Algorithmes adaptés aux calculs vectoriels et parallèles pour des méthodes de décomposition de domaines. In: Actes du troisième colloque tendances actuelles en calcul de structures. Pluralis, pp 893–907

  47. Ladevèze P (1985) On a family of algorithms for structural mechanics. C R Acad Sci 300(2):41–44 (in French)

    MATH  MathSciNet  Google Scholar 

  48. Ladevèze P (1989) The large time increment method for the analyse of structures with nonlinear constitutive relation described by internal variables. C R Acad Sci Paris 309(II):1095–1099

    MATH  Google Scholar 

  49. Ladevèze P (1991) New advances in the large time increment method. In: Ladevèze P, Zienkiewicz OC (eds) New advances in computational structural mechanics. Elsevier, Amsterdam, pp 3–21

    Google Scholar 

  50. Ladevèze P (1997). A computational technique for the integrals over the time-space domain in connection with the LATIN method. Technical Report 193, LMT-Cachan (in French)

  51. Ladevèze P (1999) Nonlinear computational structural mechanics—new approaches and non-incremental methods of calculation. Springer, Berlin

    MATH  Google Scholar 

  52. Ladevèze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192:3061–3087

    Article  MATH  Google Scholar 

  53. Ladevèze P, Loiseau O, Dureisseix D (2001) A micro-macro and parallel computational strategy for highly heterogeneous structures. Int J Numer Methods Eng 52:121–138

    Article  Google Scholar 

  54. Ladevèze P, Néron D, Gosselet P (2007) On a mixed and multiscale domain decomposition method. Comput Methods Appl Mech Eng 196:1526–1540

    Article  MATH  Google Scholar 

  55. Ladevèze P, Néron D, Passieux J-C (2009) On multiscale computational mechanics with time-space homogenization. In: Fish J (ed) Multiscale methods—Bridging the scales in science and engineering, Chapter space time scale bridging methods. Oxford University Press, Oxford, pp 247–282

    Google Scholar 

  56. Ladevèze P, Passieux J-C, Néron D (2010) The LATIN multiscale computational method and the proper generalized decomposition. Comput Methods Appl Mech Eng 199:1287–1296

    Article  Google Scholar 

  57. Lefik M, Schrefler B (2000) Modelling of nonstationary heat conduction problems in micro-periodic composites using homogenisation theory with corrective terms. Arch Mech 52(2):203–223

    MATH  MathSciNet  Google Scholar 

  58. Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  59. Lewis RW, Schrefler BA, Simoni L (1991) Coupling versus uncoupling in soil consolidation. Int J Numer Anal Methods Geomech 15:533–548

    Article  Google Scholar 

  60. Lieu T, Farhat C, Lesoinne A (2006) Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput Methods Appl Mech Eng 195(41–43):5730–5742

    Article  MATH  Google Scholar 

  61. Maday Y, Ronquist EM (2004) The reduced-basis element method: application to a thermal fin problem. SIAM J Sci Comput 26(1):240–258

    Article  MATH  MathSciNet  Google Scholar 

  62. Maman N, Farhat C (1995) Matching fluid and structure meshes for aeroelastic computations: a parallel approach. Comput Struct 54(4):779–785

    Article  Google Scholar 

  63. Matteazzi R, Schrefler B, Vitaliani R (1996) Comparisons of partitioned solution procedures for transient coupled problems in sequential and parallel processing. In: Advances in computational structures technology. Civil-Comp Ltd, Edinburgh, pp 351–357

    Chapter  Google Scholar 

  64. Matthies HG, Steindorf J (2003) Partitioned strong coupling algorithms for fluid-structure interaction. Comput Struct 81:805–812

    Article  Google Scholar 

  65. Michler C, Hulshoff SJ, van Brummelen EH, de Borst R (2004) A monolithic approach to fluid-structure interaction. Comput Struct 33:839–848

    MATH  Google Scholar 

  66. Morand J-P, Ohayon R (1995) Fluid-structure interaction: applied numerical methods. Wiley, New York

    Google Scholar 

  67. Néron D, Dureisseix D (2008) A computational strategy for poroelastic problems with a time interface between coupled physics. Int J Numer Methods Eng 73(6):783–804

    Article  MATH  Google Scholar 

  68. Néron D, Dureisseix D (2008) A computational strategy for thermo-poroelastic structures with a time-space interface coupling. Int J Numer Methods Eng 75(9):1053–1084

    Article  MATH  Google Scholar 

  69. Néron D, Ladevèze P, Dureisseix D, Schrefler BA (2004) Accounting for nonlinear aspects in multiphysics problems: Application to poroelasticity. In: Lecture notes in computer science, vol 3039, pp 612–620

    Google Scholar 

  70. Nouy A (2007) A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations. Comput Methods Appl Mech Eng 196(45–48):4521–4537

    Article  MATH  MathSciNet  Google Scholar 

  71. Nouy A (2009) Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations. Arch Comput Methods Eng 16(3):251–285

    Article  MathSciNet  Google Scholar 

  72. Nouy A, Ladevèze P (2004) Multiscale computational strategy with time and space homogenization: a radial type approximation technique for solving micro problems. Int J Multiscale Comput Eng 170(2):557–574

    Article  Google Scholar 

  73. Oden JT, Vemaganti K, Moës N (1999) Hierarchical modeling of heterogeneous solids. Comput Methods Appl Mech Eng 172:3–25

    Article  MATH  Google Scholar 

  74. Piperno S, Farhat C, Larrouturou B (1995) Partitioned procedures for the transient solution of coupled aeroelastic problems. Part I: model problem, theory and two-dimensional application. Comput Methods Appl Mech Eng 124:79–112

    Article  MATH  MathSciNet  Google Scholar 

  75. Ryckelynck D (2005) A priori hyperreduction method: an adaptive approach. J Comput Phys 202:346–366

    Article  MATH  Google Scholar 

  76. Ryckelynck D, Chinesta F, Cueto E, Ammar A (2006) On the a priori model reduction: Overview and recent developments. Arch Comput Methods Eng 13(1):91–128

    Article  MATH  MathSciNet  Google Scholar 

  77. Sanchez-Palencia E (1974) Comportement local et macroscopique d’un type de milieux physiques hétérogènes. Int J Eng Sci 12(4):331–351

    Article  MATH  MathSciNet  Google Scholar 

  78. Sanchez-Palencia E (1980) Non homogeneous media and vibration theory. Lect Notes Phys 127

  79. Turska E, Schrefler BA (1993) On convergence conditions of partitioned solution procedures for consolidation problems. Comput Methods Appl Mech Eng 106:51–63

    Article  MATH  MathSciNet  Google Scholar 

  80. Turska E, Schrefler BA (1994) On consistency, stability and convergence of staggered solution procedures. Rend Mat Acc Lincei 9(5):265–271

    MathSciNet  Google Scholar 

  81. Vermeer PA, Veruijt A (1981) An accuracy condition for consolidation by finite elements. Int J Numer Anal Methods Geomech 5:1–14

    Article  MATH  Google Scholar 

  82. Violeau D, Ladeveze P, Lubineau G (2009) Micromodel-based simulations for laminated composites. Compos Sci Technol 69(9):1364–1371

    Article  Google Scholar 

  83. Zohdi T, Wriggers P (2005) Introduction to computational micromechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  84. Zohdi T, Oden J, Rodin G (1996) Hierarchical modeling of heterogeneous bodies. Comput Methods Appl Mech Eng 138(1–4):273–298

    Article  MATH  MathSciNet  Google Scholar 

  85. Zohdi TI (2004) Modeling and simulation of a class of coupled modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids. Comput Methods Appl Mech Eng 193:679–699

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Néron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Néron, D., Ladevèze, P. Proper Generalized Decomposition for Multiscale and Multiphysics Problems. Arch Computat Methods Eng 17, 351–372 (2010). https://doi.org/10.1007/s11831-010-9053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-010-9053-2

Keywords

Navigation