Skip to main content
Log in

Homogeneous spaces and transitive actions by Polish groups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove that for every homogeneous and strongly locally homogeneous Polish space X there is a Polish group admitting a transitive action on X. We also construct an example of a homogeneous Polish space which is not a coset space and on which no separable metrizable topological group acts transitively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Aarts and L. G. Oversteegen, The product structure of homogeneous spaces, Indagationes Mathematicae (New Series) 1 (1990), 1–5.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. D. Ancel, An alternative proof and applications of a theorem of E. G. Effros, The Michigan Mathematical Journal 34 (1987), 39–55.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. D. Anderson, On topological infinite deficiency, The Michigan Mathematical Journal 14 (1967), 365–383.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Becker and A. S. Kechris, The Descriptive Set Theory of Polish Group Actions, London Mathematical Society Lecture Note Series, vol. 232, Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  5. M. Bestvina, Characterizing k-dimensional universal Menger compacta, Memoirs of the American Mathematical Society 71 (1988), no. 380, vi+110.

  6. R. H. Bing and F. B. Jones, Another homogeneous plane continuum, Transactions of the American Mathematical Society 90 (1959), 171–192.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. J. Dijkstra and J. van Mill, Homeomorphism groups of manifolds and Erdős space, Electronic Research Announcments of the American Mathematical Society 10 (2004), 29–38.

    Article  MATH  Google Scholar 

  8. E. G. Effros, Transformation groups and C*-algebras, Annals of Mathematics 81 (1965), 38–55.

    Article  MathSciNet  Google Scholar 

  9. R. Engelking, Theory of Dimensions Finite and Infinite, Heldermann Verlag, Lemgo, 1995.

    MATH  Google Scholar 

  10. P. Erdős, The dimension of the rational points in Hilbert space, Annals of Mathematics 41 (1940), 734–736.

    Article  MathSciNet  Google Scholar 

  11. L. R. Ford, Jr., Homeomorphism groups and coset spaces, Transactions of the American Mathematical Society 77 (1954), 490–497.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Fort, Homogeneity of infinite products of manifolds with boundary, Pacific Journal of Mathematics 12 (1962), 879–884.

    MATH  MathSciNet  Google Scholar 

  13. E. Glasner and M. Megrelishvili, Some new algebras of functions on toopological groups arising from G-spaces, 2006, preprint.

  14. A. Hohti, Another alternative proof of Effros’ theorem, Topology Proceedings 12 (1987), 295–298.

    MathSciNet  Google Scholar 

  15. K. Kawamura, L. G. Oversteegen and E. D. Tymchatyn, On homogeneous totally disconnected 1-dimensional spaces, Fundamenta Mathematicae 150 (1996), 97–112.

    MATH  MathSciNet  Google Scholar 

  16. A. S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

  17. O. H. Keller, Die Homoiomorphie der kompakten konvexen Mengen in Hilbertschen Raum, Mathematische Annalen 105 (1931), 748–758.

    Article  MATH  MathSciNet  Google Scholar 

  18. K. Kunen, Set Theory. An Introduction to Independence Proofs, Studies in Logic and the foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam, 1980.

    MATH  Google Scholar 

  19. W. Lewis, Continuous curves of pseudo-arcs, Houston Journal of Mathematics 11 (1985), 91–99.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. G. Megrelishvili, A Tikhonov G-space admitting no compact Hausdorff G-extension or G-linearization, Russian Mathematical Surveys 43 (1988), 177–178.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. G. Megrelishvili, Compactification and factorization in the category of G-spaces, in Categorical Topology and its Relation to Analysis, Algebra and Combinatorics (Prague, 1988), World Sci. Publishing, Teaneck, NJ, 1989, pp. 220–237.

    Google Scholar 

  22. M. G. Megrelishvili, Every semitopological semigroup compactification of the group H + [0, 1] is trivial, Semigroup Forum 63 (2001), 357–370.

    MATH  MathSciNet  Google Scholar 

  23. J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-Holland Publishing Co., Amsterdam, 2001.

    MATH  Google Scholar 

  24. J. van Mill, A note on Ford’s Example, Topology Proceedings 28 (2004), 689–694.

    MATH  MathSciNet  Google Scholar 

  25. J. van Mill, A note on the Effros Theorem, The American Mathematical Monthly 111 (2004), 801–806.

    Article  MathSciNet  Google Scholar 

  26. J. van Mill, Strong local homogeneity and coset spaces, Proceedings of the American Mathematical Society 133 (2005), 2243–2249.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. van Mill, Not all homogeneous Polish spaces are products, Houston Journal of Mathematics 32 (2006), 489–492.

    MATH  MathSciNet  Google Scholar 

  28. J. van Mill, Homogeneous spaces and transitive actions by analytic groups, The Bulletin of the London Mathematical Society 39 (2007), 329–336.

    Article  MATH  Google Scholar 

  29. M. W. Mislove and J. T. Rogers, Jr., Local product structures on homogeneous continua, Topology and its Applications 31 (1989), 259–267.

    Article  MATH  MathSciNet  Google Scholar 

  30. M. W. Mislove and J. T. Rogers, Jr., Addendum: “Local product structures on homogeneous continua”, Topology and its Applications 34 (1990), 209.

    Article  MathSciNet  Google Scholar 

  31. P. S. Mostert, Reasonable topologies for homeomorphism groups, Proceedings of the American Mathematical Society 12 (1961), 598–602.

    Article  MATH  MathSciNet  Google Scholar 

  32. V. Pestov, Dynamics of Infinite-dimensional Groups and Ramsey-type Phenomena, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2005.

    MATH  Google Scholar 

  33. M. Rubin, On the reconstruction of topological spaces from their groups of homeomorphisms, Transactions of the Amrecian Mathematical Society 312 (1989), 487–538.

    Article  MATH  Google Scholar 

  34. S. Solecki, Polish group topologies, in Sets and proofs, London Math. Soc. Lecture Note Series, vol. 258 (S. B. Cooper and J. K. Truss, eds.), Cambridge University Press, Cambridge, 1999, pp. 339–364.

    Google Scholar 

  35. S. Teleman, Sur la représentation linéaire des groupes topologiques, Annales Scientifiques de l’École Normale Supérieure 74 (1957), 319–339.

    MATH  MathSciNet  Google Scholar 

  36. G. S. Ungar, On all kinds of homogeneous spaces, Transactions of the Amrecian Mathematical Society 212 (1975), 393–400.

    Article  MATH  MathSciNet  Google Scholar 

  37. V. V. Uspenskii, Why compact groups are dyadic, in General Topology and its Relations to Modern Analysis and Algebra, VI (Prague, 1986), Research and Exposition in Mathematics, vol. 16, Heldermann, Berlin, 1988, pp. 601–610.

    Google Scholar 

  38. V. V. Uspenskii, Topological groups and Dugundji compact spaces, Matematicheskii Sbornik 180 (1989), 1092–1118.

    Google Scholar 

  39. J. de Vries, On the existence of G-compactifications, Bulletin de l’Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 26 (1978), 275–280.

    MATH  Google Scholar 

  40. J. de Vries, Linearization, compactification and the existence of non-trivial compact extensors for topological transformation groups, in Topology and Measure III, Ernst-Moritz-Arndt-Universität zu Greifswald, 1982, pp. 339–346.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan van Mill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Mill, J. Homogeneous spaces and transitive actions by Polish groups. Isr. J. Math. 165, 133–159 (2008). https://doi.org/10.1007/s11856-008-1007-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-008-1007-0

Keywords

Navigation