Skip to main content
Log in

The structure of popular difference sets

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We show that the set of popular differences of a large subset of ℤ N does not always contain the complete difference set of another large set. For this purpose we construct a so-called niveau set, which was first introduced by Ruzsa in [Ruz87] and later used in [Ruz91] to show that there exists a large subset of ℤ N whose sumset does not contain any long arithmetic progressions. In this paper we make substantial use of measure concentration results on the multi-dimensional torus and Esseen’s Inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Albers and W. C. M. Kallenberg, A simple approximation to the bivariate normal distribution with large correlation coefficient, Journal of Multivariate Analysis 49 (1994), 87–96.

    Article  MATH  MathSciNet  Google Scholar 

  2. N. Alon and J. Spencer, The Probabilistic Method, Wiley-Interscience [John Wiley & Sons], New York, 2000.

    Book  MATH  Google Scholar 

  3. A. C. Berry, The accuracy of the Gaussian approximation to the sum of independent variates, Transactions of the American Mathematical Society 49 (1941), 122–136.

    MATH  MathSciNet  Google Scholar 

  4. H. Bergstrom, On the central limit theorem in the casek, k > 1, Skand. Aktuarietidskr. 2 (1945), 106–127.

    MathSciNet  Google Scholar 

  5. M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  6. C-G. Esseen, Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law, Acta Mathematica 77 (1945), 1–125.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. J. Green, Some constructions in the inverse spectral theory of cyclic groups, Combinatorics, Probability and Computing 12 (2003), 127–138.

    Article  MATH  MathSciNet  Google Scholar 

  8. B. J. Green, Finite field models in additive combinatorics, in Surveys in combinatorics 2005, London Math. Soc. Lecture Note Ser., vol. 327, Cambridge University Press, Cambridge, 2005, pp. 1–27.

    Chapter  Google Scholar 

  9. B. J. Green and I. Ruzsa, Sum-free sets in abelian groups, Israel Journal of Mathematics 147 (2005), 157–189.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. H. Harper, Optimal numberings and isoperimetric problems on graphs, Journal of Combinatorial Theory 1 (1966), 385–393.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Janson, T. Łuczak and A. Rucinski, Random Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience [John Wiley & Sons], New York, 2000.

    MATH  Google Scholar 

  12. D. Kleitman, On a combinatorial conjecture by Erdös, Journal of Combinatorial Theory 1 (1966), 209–214.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Ledoux, The concentration of measure phenomenon, AMS Mathematical Surveys and Monographs, vol. 89, American Mathematical Society, Providence, RI, 2001.

    MATH  Google Scholar 

  14. V. Lev, T. Łuczak and T. Schoen, Sum-free sets in abelian groups, Israel Journal of Mathematics 125 (2001), 347–367.

    Article  MATH  MathSciNet  Google Scholar 

  15. C. McDiarmid, On the method of bounded differences, in Surveys in combinatorics, 1989 (Norwich, 1989), London Math. Soc. Lecture Note Ser., vol. 141, Cambridge University Press, Cambridge, 1989, pp. 148–188.

    Google Scholar 

  16. H. Niederreiter and W. Philipp, Berry-Esseen bounds and a theorem of Erdös and Turán on uniform distribution mod 1, Duke Mathematical Journal 40 (1973), 633–649.

    Article  MATH  MathSciNet  Google Scholar 

  17. I. Z. Ruzsa, Essential components, Proceedings of the London Mathematical Society. Third Series 54 (1987), 38–56.

    Article  MATH  MathSciNet  Google Scholar 

  18. I. Z. Ruzsa, Arithmetic progressions in sumsets, Acta Arithmetica 2 (1991), 191–202.

    MathSciNet  Google Scholar 

  19. S. M. Sadikova, Two-dimensional analogues of an inequality of Esseen with applications to the Central Limit Theorem, Theory of Probability and Its Applications 11 (1966), 325–335.

    Article  Google Scholar 

  20. T. Sanders, Popular difference sets, Available at http://arxiv.org/abs/0807.5106, 2008.

  21. A. N. Shiryayev, Probability, Graduate Texts in Mathematics, vol. 95, Springer-Verlag, New York, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, J. The structure of popular difference sets. Isr. J. Math. 179, 253–278 (2010). https://doi.org/10.1007/s11856-010-0081-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-010-0081-2

Keywords

Navigation