Skip to main content
Log in

Bishop’s theorem and differentiability of a subspace of C b (K)

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let K be a Hausdorff space and C b (K) be the Banach algebra of all complex bounded continuous functions on K. We study the Gâteaux and Fréchet differentiability of subspaces of C b (K). Using this, we show that the set of all strong peak functions in a nontrivial separating separable subspace H of C b (K) is a dense G δ subset of H, if K is compact. This gives a generalized Bishop’s theorem, which says that the closure of the set of all strong peak points for H is the smallest closed norming subset of H. The classical Bishop’s theorem was proved for a separating subalgebra H and a metrizable compact space K.

In the case that X is a complex Banach space with the Radon-Nikodým property, we show that the set of all strong peak functions in A b (B X ) = {fC b (B X ): f|B X is holomorphic} is dense. As an application, we show that the smallest closed norming subset of A b (B X ) is the closure of the set of all strong peak points for A b (B X ). This implies that the norm of A b (B X ) is Gâteaux differentiable on a dense subset of A b (B X ), even though the norm is nowhere Fréchet differentiable when X is nontrivial. We also study the denseness of norm attaining holomorphic functions and polynomials. Finally we investigate the existence of the numerical Shilov boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. M. D. Acosta, J. Alaminos, D. García and M. Maestre, On holomorohic functions attaining their norms, Journal of Mathematical Analysis and Applications 297 (2004), 625–644.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. D. Acosta and S. G. Kim, Numerical boundaries for some classical Banach spaces, Journal of Mathematics and Applications 350 (2009), 694–707.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. M. Aron, Y. S. Choi, M. L. Lourenço and Q. W. Paques, Boundaries for algebras of analytic functions on infinite-dimensional Banach spaces. Banach spaces (Merida, 1992), Contemporary Mathematics 144, American Mathematical Society, Providence, RI, 1993, pp. 15–22.

    Google Scholar 

  4. R. M. Aron, B. J. Cole and T. W. Gamelin, Spectra of algebras of analytic functions on a Banach space, Journal für die Reine und Angewandte Mathematik 415 (1991), 51–93.

    MATH  MathSciNet  Google Scholar 

  5. E. Bishop, A minimal boundary for function algebras, Pacific Journal of Mathematics 9 (1959), 629–642.

    MATH  MathSciNet  Google Scholar 

  6. J. Bourgain, On dentability and the Bishop-Phelps property, Israel Journal of Mathematics 28 (1977), 265–271.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. V. Bukhvalov and A. A. Danilevich, Boundary properties of analytic and harmonic functions with values in a Banach space, Rossiĭskaya Akademiya Nauk. Matematicheskie Zametki 31 (1982), no. 2, 203–214, 317; English translation: Mathematical Notes 31 (1982), 104–110.

    MathSciNet  Google Scholar 

  8. T. K. Carne, B. Cole and T. W. Gamelin, A uniform algebra of analytic functions on a Banach space, Transactions of the American Mathematical Society 314 (1989), 639–659.

    MATH  MathSciNet  Google Scholar 

  9. S. B. Chae, Holomorphy and calculus in normed spaces, Marcel Dekker, Inc., New York, 1985.

    MATH  Google Scholar 

  10. Y. S. Choi and K. H. Han, Boundaries for algebras of holomorphic functions on Marcinkiewicz sequence spaces, Journal of Mathematical Analysis and Applications 323 (2006), 1116–1133.

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. S. Choi, K. H. Han and H. J. Lee, Boundaries for algebras of holomorphic functions on Banach spaces, Illinois Journal of Mathematics 51 (2007), 883–896.

    MATH  MathSciNet  Google Scholar 

  12. Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, Journal of the London Mathematical Society 54 (1996), 135–147.

    MATH  MathSciNet  Google Scholar 

  13. W. J. Davis, D. J. H. Garling and N. Tomczak-Jagermann, The complex convexity of quasi-normed linear spaces, Journal of Functional Analysis 55 (1984), 110–150.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach spaces, John Wiley & Sons, Inc., New York, 1993.

    MATH  Google Scholar 

  15. S. Dineen, Complex analysis on infinite-dimensional spaces, Springer-Verlag, London, 1999.

    MATH  Google Scholar 

  16. J. Diestel and J. J. Uhl, Vector meausres, American Mathematical Society, Providence, RI, 1977.

    Google Scholar 

  17. P. N. Dowling, Z. Hu and D. Mupasiri, Complex convexity in Lebesgue-Bochner function spaces, Transactions of the American Mathematical Society 348 (1996), 127–139.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Ferrera, Norm-attaining polynomials and differentiability, Studia Mathematica 151 (2002), 1–21.

    Article  MATH  MathSciNet  Google Scholar 

  19. V. P. Fonf, J. Lindenstrauss and R. R. Phelps, Infinite dimensional convexity, Handbook of the Geometry of Banach Spaces, Vol. 1, W.B. Johnson and J. Lindenstrauss, eds, Elsevier, Amsterdam (2001), 599–670.

    Google Scholar 

  20. P. Foralewski and P. Kolwicz, Local uniform rotundity in Calderón-Lozanovskiĭ spaces, Journal of Convex Analysis 14 (2007), 395–412.

    MATH  MathSciNet  Google Scholar 

  21. T. W. Gamelin, Uniform algebras, Chelsea Publishing Company, New York, NY, 1984.

    Google Scholar 

  22. N. Ghoussoub, J. Lindenstrauss and B. Maurey, Analytic martingales and plurisubharmonic barriers in complex Banach spaces, Banach space theory (Iowa City, IA, 1987), 111–130, Contemporary Mathematics 85, American Mathematical Society, Providence, RI, 1989, pp. 111–130.

    Google Scholar 

  23. J. Globevnik, Boundaries for polydisc algebras in infinite dimensions, Mathematical Proceedings of the Cambridge Philosophical Society 85 (1979), 291–303.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Globevnik, On complex strict and uniform convexity, Proceedings of the American Mathematical Society 47 (1975), 175–178.

    MATH  MathSciNet  Google Scholar 

  25. J. Globevnik, On interpolation by analytic maps in infinite dimensions, Mathematical Proceedings of the Cambridge Philosophical Society 83 (1978), 243–252.

    Article  MATH  MathSciNet  Google Scholar 

  26. L. Romero Grados and L. A. Moraes, Boundaries for algebras of holomorphic functions, Journal of Mathematical Analysis and Applications 281 (2003), 575–586.

    Article  MATH  MathSciNet  Google Scholar 

  27. H. Hudzik, A. Kamińska and M. Mastyło, On geometric properties of Orlicz-Lorentz spaces, Canadian Mathematical Bulletin 40 (1997), 316–329.

    MATH  MathSciNet  Google Scholar 

  28. W. B. Johnson and J. Lindenstrauss, Basic concepts in the geometry of Banach spaces, Handbook of the Geometry of Banach Spaces, Vol. 1, W. B. Johnson and J. Lindenstrauss, eds, Elsevier, Amsterdam (2001), 1–84.

    Google Scholar 

  29. R. Larsen, Banach Algebras, Marcel-Dekker, Inc., New York, 1973.

    MATH  Google Scholar 

  30. H. J. Lee, Complex convexity and monotonicity in quasi-Banach lattices, Israel Journal of Mathematics 159 (2007), 57–91.

    Article  MATH  MathSciNet  Google Scholar 

  31. H. J. Lee, Monotonicity and complex convexity in Banach lattices, Journal of Mathematical Analysis and Applications 307 (2005), 86–101.

    Article  MATH  MathSciNet  Google Scholar 

  32. H. J. Lee, Randomized series and geometry of Banach spaces, Taiwanese Journal of Mathematics, to appear.

  33. A. Rodríguez-Palacios, Numerical ranges of uniformly continuous functions on the unit sphere of a Banach space, Special issue dedicated to John Horváth. Journal of Mathematical Analysis and Applications 297 (2004), 472–476.

    MATH  Google Scholar 

  34. Šilov, Sur la théorie des idéaux dans les anneaux normés de fonctions, C. R. (Doklady) Acad. Sci. URSS (N.S.) 27 (1940), 900–903.

    MathSciNet  Google Scholar 

  35. C. Stegall, Optimization and differentiation in Banach spaces, Linear Algebra and its Applications 84 (1986), 191–211.

    Article  MATH  MathSciNet  Google Scholar 

  36. R. V. Shvydkoy, Geometric aspects of the Daugavet property, Journal of Functional Analysis 176 (2000), 198–212.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Sung Choi.

Additional information

The first named author was supported by grant No. R01-2004-000-10055-0 from the Basic Research Program of the Korea Science & Engineering Foundation and the second named author was supported by the Dongguk University Research Fund of 2008.

The second named author is the corresponding author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, Y.S., Lee, H.J. & Song, H.G. Bishop’s theorem and differentiability of a subspace of C b (K). Isr. J. Math. 180, 93–118 (2010). https://doi.org/10.1007/s11856-010-0095-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-010-0095-9

Keywords

Navigation