Skip to main content
Log in

Structural connections between a forcing class and its modal logic

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Every definable forcing class Γ gives rise to a corresponding forcing modality \({\square _\Gamma }\) where \({\square _{\Gamma \varphi }}\) means that ϕ is true in all Γ extensions, and the valid principles of Γ forcing are the modal assertions that are valid for this forcing interpretation. For example, [10] shows that if ZFC is consistent, then the ZFC-provably valid principles of the class of all forcing are precisely the assertions of the modal theory S4.2. In this article, we prove similarly that the provably valid principles of collapse forcing, Cohen forcing and other classes are in each case exactly S4.3; the provably valid principles of c.c.c. forcing, proper forcing, and others are each contained within S4.3 and do not contain S4.2; the provably valid principles of countably closed forcing, CH-preserving forcing and others are each exactly S4.2; and the provably valid principles of ω 1-preserving forcing are contained within S4.tBA. All these results arise from general structural connections we have identified between a forcing class and the modal logic of forcing to which it gives rise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Abraham, On forcing without the continuum hypothesis, Journal of Symbolic Logic 48 (1983), 658–661.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Blackburn, M. de Rijke and Y. Venema, Modal Logic, Cambridge Tracts in Theoretical Computer Science, Vol. 53, Cambridge University Press, Cambridge, 2001.

    MATH  Google Scholar 

  3. A. Chagrov and M. Zakharyaschev, Modal logic, Oxford Logic Guides, Vol. 35, Oxford University Press, New York, 1997.

    MATH  Google Scholar 

  4. L. Esakia and B. Löwe, Fatal Heyting algebras and forcing persistent sentences, Studia Logica 100 (2012), 163–173.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Friedman, S. Fuchino and H. Sakai, On the set-generic multiverse, submitted, 2012.

  6. G. Fuchs, Closed maximality principles: implications, separations and combinations, Journal of Symbolic Logic 73 (2008), 276–308.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Fuchs, Combined maximality principles up to large cardinals, Journal of Symbolic Logic 74 (2009), 1015–1046.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. M. Gabbay, The decidability of the Kreisel-Putnam system, Journal of Symbolic Logic 35 (1970), 431–437.

    Article  MathSciNet  Google Scholar 

  9. J. D. Hamkins, A simple maximality principle, Journal of Symbolic Logic 68 (2003), 527–550.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. D. Hamkins and B. Löwe, The modal logic of forcing, Transactions of the American Mathematical Society 360 (2008), 1793–1817.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. D. Hamkins and B. Löwe, Moving up and down in the generic multiverse, in Logic and its Applications, Lecture Notes in Computer Science, Vol. 7750, Springer-Verlag, Heidelberg, 2013, pp. 139–147.

    Chapter  Google Scholar 

  12. J. D. Hamkins and W. H. Woodin, The necessary maximality principle for c.c.c. forcing is equiconsistent with a weakly compact cardinal, Mathematical Logic Quarterly 51 (2005), 493–498.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. E. Hughes and M. J. Cresswell, A new Introduction to Modal Logic, Routledge, London, 1996.

    Book  MATH  Google Scholar 

  14. T. C. Inamdar, On the modal logics of some set-theoretic constructions, Master’s thesis, Universiteit van Amsterdam, 2013, ILLC Publications MoL-2013-07.

  15. T. Jech, Set Theory, 3rd ed., Springer Monographs in Mathematics, Springer-Verlag, Heidelberg, 2003.

    MATH  Google Scholar 

  16. G. Leibman, Consistency strengths of modified maximality principles, Ph.D. thesis, City University of New York, 2004.

  17. G. Leibman, The consistency strength of MPCCC(), Notre Dame Journal of Formal Logic 51 (2010), 181–193.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. L. Maksimova, D. P. Skvorcov and Valentin B. Šehtman, Impossibility of finite axiomatization of Medvedev’s logic of finite problems, Doklady Akademii Nauk SSSR 245 (1979), 1051–1054.

    MathSciNet  Google Scholar 

  19. C. J. Rittberg, The modal logic of forcing, Master’s thesis, Westfälische Wilhelms-Universität Münster, 2010.

  20. J. Stavi and J. Väänänen, Reflection principles for the continuum, in Logic and Algebra, Contemporary Mathematics, Vol. 302, American Mathematical Society, Providence, RI, 2002, pp. 59–84.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel David Hamkins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamkins, J.D., Leibman, G. & Löwe, B. Structural connections between a forcing class and its modal logic. Isr. J. Math. 207, 617–651 (2015). https://doi.org/10.1007/s11856-015-1185-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1185-5

Keywords

Navigation