Skip to main content
Log in

Optimal combinations bounds of root-square and arithmetic means for Toader mean

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

We find the greatest value α 1 and α 2, and the least values β 1 and β 2, such that the double inequalities α 1 S(a,b) + (1 − α 1) A(a,b) < T(a,b) < β 1 S(a,b) + (1 − β 1) A(a,b) and \(S^{\alpha_{2}}(a,b)A^{1-\alpha_{2}}(a,b)< T(a,b)< S^{\beta_{2}}(a,b)A^{1-\beta_{2}}(a,b)\) hold for all a,b > 0 with a ≠ b. As applications, we get two new bounds for the complete elliptic integral of the second kind in terms of elementary functions. Here, S(a,b) = [(a 2 + b 2)/2]1/2, A(a,b) = (a + b)/2, and \(T(a,b)=\frac{2}{\pi}\int\limits_{0}^{{\pi}/{2}}\sqrt{a^2{\cos^2{\theta}}+b^2{\sin^2{\theta}}}{\rm d}\theta\) denote the root-square, arithmetic, and Toader means of two positive numbers a and b, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alzer H and Qiu S-L, Inequalities for means in two variables, Arch. Math. (Basel) 80(2) (2003) 201–215

    Article  MathSciNet  MATH  Google Scholar 

  2. Alzer H, A power mean inequality for the gamma function, Monatsh. Math. 131(3) (2000) 179–188

    Article  MathSciNet  MATH  Google Scholar 

  3. Alzer H and Qiu S-L, Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comput. Appl. Math. 172(2) (2004) 289–312

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson G D, Vamanamurthy M K and Vuorinen M, Conformal Invariants, Inequalities, and Quasiconformal Maps (New York: John Wiley & Sons) (1997)

    MATH  Google Scholar 

  5. Barnard R W, Pearce K and Richards K C, An inequality involving the generalized hypergeometric function and the arc length of an ellipse, SIAM J. Math. Anal. 31(3) (2000) 693–699

    Article  MathSciNet  MATH  Google Scholar 

  6. Barnard R W, Pearce K and Richards K C, A monotonicity property involving 3 F 2 and comparisons of the classical approximations of elliptical arc length, SIAM J. Math. Anal. 32(2) (2000) 403–419

    Article  MathSciNet  MATH  Google Scholar 

  7. Barnard R W, Pearce K and Schovanec L, Inequalities for the perimeter of an ellipse, J. Math. Anal. Appl. 260(2) (2001) 295–306

    Article  MathSciNet  MATH  Google Scholar 

  8. Barnard R W, Richards K C and Tiedeman H C, A survey of some bounds for Gauss’s hypergeometric function and related bivariate means, J. Math. Inequal. 4(1) (2010) 45–52

    MathSciNet  Google Scholar 

  9. Borwein J M and Borwein P B, Inequalities for compound mean iterations with logarithmic asymptotes, J. Math. Anal. Appl. 177(2) (1993) 572–582

    Article  MathSciNet  MATH  Google Scholar 

  10. Bullen P S, Mitrinović D S and Vasić P M, Means and their inequalities (Dordrecht: D. Reidel Publishing Co.) (1988)

    MATH  Google Scholar 

  11. Guo B-N and Qi F, Some bounds for the complete elliptic integrals of the first and second kinds, Math. Inequal. Appl. 14(2) (2011) 323–334

    MathSciNet  MATH  Google Scholar 

  12. Hardy G H, Littlewood J E and Pólya J E, Inequalities (Cambridge: Cambridge University Press) (1988)

    MATH  Google Scholar 

  13. Hästö P A, Optimal inequalities between Seiffert’s mean and power means, Math. Inequal. Appl. 7(1) (2004) 47–53

    MathSciNet  MATH  Google Scholar 

  14. Huntington E V, Sets of independent postulates for the arithmetic mean, the geometric mean, the harmonic mean, and the root-mean-square, Trans. Am. Math. Soc. 29(1) (1927) 1–22

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin T P, The power mean and the logarithmic mean, Am. Math. Mon. 81 (1974) 879–883

    Article  MATH  Google Scholar 

  16. Qiu S-L and Shen J-M, On two problems concerning means, J. Hangzhou Inst. Electronic Engg. 17(3) (1997) 1–7 (in Chinese)

    Google Scholar 

  17. Richards K C, Sharp power mean bounds for the Gaussian hypergeometric function, J. Math. Anal. Appl. 308(1) (2005) 303–313

    Article  MathSciNet  MATH  Google Scholar 

  18. Toader Gh., Some mean values related to the arithmetic-geometric mean, J. Math. Anal. Appl. 218(2) (1998) 358–368

    Article  MathSciNet  MATH  Google Scholar 

  19. Vamanamurthy M K and Vuorinen M, Inequalities for means, J. Math. Anal. Appl. 183(1) (1994) 155–166

    Article  MathSciNet  MATH  Google Scholar 

  20. Vuorinen M, Hypergeometric functions in geometric function theory, Special functions and differential equations (Madras, 1997) (New Delhi: Allied Publ.) (1998) pp. 119–126

    Google Scholar 

  21. Yang Z-H, A new proof of inequalities for Gauss compound mean, Int. J. Math. Anal. 4(21) (2010) 1013–1018

    MathSciNet  MATH  Google Scholar 

  22. Zhang X-H, Wang G-D and Chu Y-M, Convexity with respect to Hölder mean involving zero-balanced hypergeometric functions, J. Math. Anal. Appl. 353(1) (2009) 256–259

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YU-MING CHU.

Rights and permissions

Reprints and permissions

About this article

Cite this article

CHU, YM., WANG, MK. & QIU, SL. Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc Math Sci 122, 41–51 (2012). https://doi.org/10.1007/s12044-012-0062-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12044-012-0062-y

Keywords

Navigation