Skip to main content
Log in

A modified Leslie–Gower predator–prey model with prey infection

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The disease effect on ecological systems is an important issue from mathematical and experimental point of view. In this paper, we formulate and analyze a predator–prey model for the susceptible population, infected population and their predator population with modified Leslie–Gower (or Holling–Tanner) functional response. Mathematical analysis of the model equations with regard to invariance of nonnegativity and boundedness of solutions, local and global stability of the biological feasible equilibria and permanence of the system are presented. When the rate of infection crosses a critical value, we determine that the strictly positive interior equilibrium undergoes Hopf bifurcation. From our numerical simulations, we observe that the predation rate also plays an important role on the dynamic behavior of our system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, R.M., May, R.M.: Infectious Diseases of Humans, Dynamics and Control. Oxford University Press, Oxford (1991)

    Google Scholar 

  2. Li, M.Y., Graef, J.R., Wang, L.C., Karsai, J.: Global dynamics of a SEIR model with a varying total population size. Math. Biosci. 160, 191–213 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anderson, R.M., May, R.M. (eds.): Population Biology of Infectious Diseases. Springer, Berlin (1982)

    Google Scholar 

  4. Kuang, Y., Beretta, E.: Global qualitative analysis of a ratio dependent predator prey system. J. Math. Biol. 36, 389–406 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Saez, E., Gonzelez-Olivares, E.: Dynamics of a predator–prey model. SIAM J. Appl. Math. 59, 1867–1878 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jost, C., Arino, O., Arditi, R.: About deterministic extinction in ratio-dependent predator–prey models. Bull. Math. Biol. 61, 19–32 (1999)

    Article  Google Scholar 

  7. Xiao, Y.N., Chen, L.S.: Modelling and analysis of a predator–prey model with disease in the prey. Math. Biosci. 171, 59–82 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chattopadhyay, J., Arino, O.: A predator–prey model with disease in the prey. Nonlinear Anal. 36, 747–766 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chattopadhyay, J., Pal, S., El Abdllaoui, A.: Classical predator–prey system with infection of prey population – a mathematical model. Math. Methods Appl. Sci. 26, 1211–1222 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Venturino, E.: The influence of disease on Lotka–Volterra systems. Rocky Mountain J. Math. 24, 389–402 (1994)

    MathSciNet  Google Scholar 

  11. Aziz-alaoui, M.A., Daher Okiye, M.: Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling-type II type schemes. Appl. Math. Lett. 16, 1069–1075 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guo, H.J., Song, X.Y.: An impulsive predator–prey system with modified Leslie–Gower and Holling type II schemes. Chaos, Solitons Fractals 36(5), 1320–1331 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Song, X.Y., Li, Y.F.: Dynamic behaviors of the periodic predator–prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect. Nonlinear Anal. Real World Appl. 9(1), 64–79 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, London (2004)

    Google Scholar 

  15. Butler, G., Freedman, H.I., Waltman, P.: Uniformly persistence system. J. Proc. Am. Math. Soc. 96, 425–430 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Freedman, H.I., Waltman, P.: Persistence in a model of three competitive populations. Math. Biosci. 73(11), 89–101 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Freedman, H.I., Moson, P.: Persistence definitions and their connections. Proc. Am. Math. Soc. 109, 1025–1033 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hale, J.K., Waltman, P.: Persistence in infinite-dimensional systems. SIAM J. Math. Anal. 20, 388–396 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyong Zhou.

Additional information

This work is supported by the National Natural Science Foundation of China (No. 10771104 and No. 10771179) and Program for Innovative Research Team (in Science and Technology) in University of Henan Province.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Cui, J., Shi, X. et al. A modified Leslie–Gower predator–prey model with prey infection. J. Appl. Math. Comput. 33, 471–487 (2010). https://doi.org/10.1007/s12190-009-0298-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-009-0298-6

Keywords

Mathematics Subject Classification (2000)

Navigation