Skip to main content
Log in

Dynamics of the genic mutational rate on a population system with birth pulse and impulsive input toxins in polluted environment

  • Applied mathematics
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider the genic mutation on an impulsive population system in polluted environment. All solutions of the investigated system are proved to be uniformly bounded. Using mathematical analysis methods, the conditions of the globally asymptotically stable population-extinction solution of the investigated system are obtained. The permanent condition of the investigated system is also obtained. Finally, numerical analysis is carried out illustrate our results. Our results provide reliable tactic basis for the practical biological resource management in polluted environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Epstein, S.S.: Control of chemical pollutants. Nature 228, 816–819 (1970)

    Article  Google Scholar 

  2. Waxman, D., Peck, J.R.: Sex and adaptation in a changing environment. Genetics 153, 1041–1053 (1999)

    Google Scholar 

  3. Bello, Y., Waxman, D.: Near-periodic substitution and the genetic variance induced by environmental change. J. Theor. Biol. 239, 152–160 (2006)

    Article  MathSciNet  Google Scholar 

  4. Xin, W., et al.: Environmental factors and birth defect. Med. Philos. 28, 18–21 (2007) (in Chinese)

    Google Scholar 

  5. Hass, C.N.: Application of predator-prey models to disinfection. J. Water Pollut. Control Fed. 53, 378–386 (1981)

    Google Scholar 

  6. Hsu, S.B., Waltman, P.: Competition in the chemostat when one competitor produces a toxin. Jpn. J. Ind. Appl. Math. 15, 471–490 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jenson, A.L., Marshall, J.S.: Application of surplus production model to access environmental impacts in exploited populations of Daphnia pluex in the laboratory. Environ. Pollut. A 28, 273–280 (1982)

    Article  Google Scholar 

  8. De Luna, J.T., Hallam, T.G.: Effects of toxicants on population: a qualitative approach. IV. Resource-consumer-toxicants model. Ecol. Model. 35, 249–273 (1987)

    Article  Google Scholar 

  9. Dubey, B.: Modelling the effect of toxicant on forestry resources. Indian J. Pure Appl. Math. 28, 1–12 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Freedman, H.I., Shukla, J.B.: Models for the effect of toxicant in a single-species and predator-prey systems. J. Math. Biol. 30, 15–30 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hallam, T.G., Clark, C.E., Jordan, G.S.: Effects of toxicant on population: a qualitative approach II. First order kinetics. J. Math. Biol. 18, 25–37 (1983)

    Article  MATH  Google Scholar 

  12. Zhang, B.G.: Population’s Ecological Mathematics Modeling. Publishing of Qingdao Marine University, Qingdao (1990)

    Google Scholar 

  13. Hallam, T.G., Clark, C.E., Lassider, R.R.: Effects of toxicant on population: a qualitative approach I. Equilibrium environmental exposure. Ecol. Model. 18, 291–340 (1983)

    Article  Google Scholar 

  14. Liu, B., Chen, L.S., Zhang, Y.J.: The effects of impulsive toxicant input on a population in a polluted environment. J. Biol. Syst. 11, 265–287 (2003)

    Article  MATH  Google Scholar 

  15. Caughley, G.: Analysis of Vertebrate Population. Wiley, New York (1977)

    Google Scholar 

  16. Tang, S., Chen, L.: Density-dependent birth rate, birth pulses and their population dynamics consequences. J. Math. Biol. 290, 185–199 (2002)

    Article  MathSciNet  Google Scholar 

  17. Liu, Z., Chen, L.: Periodic solution of a two-species competitive system with toxicant and birth pules. Chaos Solitons Fractals 32, 1703–1712 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, X.N.: Impulsive stabilization and applications to population growth models. J. Math. 25(1), 381–395 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Lakshmikantham, V.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)

    MATH  Google Scholar 

  20. Liu, X.N., Chen, L.S.: Complex dynamics of Holling II Lotka-Volterra predator-prey system with impulsive perturbations on the predator. Chaos Solitons Fractals 16, 311–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Song, X.Y., Chen, L.S.: Uniform persistence and global attractivity for nonautonomous competitive systems with dispersion. J. Syst. Sci. Complex. 15, 307–314 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Meng, X.Z., Chen, L.S.: Permanence and global stability in an impulsive Lotka-Volterra N-species competitive system with both discrete delays and continuous delays. Int. J. Biomath. 1(2), 179–196 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jiao, J.J., et al.: An appropriate pest management SI model with biological and chemical control concern. Appl. Math. Comput. 196, 285–293 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Murray, J.D.: Mathematical Biology, 2nd corrected edn. Springer, Heidelberg (1993)

    Book  MATH  Google Scholar 

  25. Takeuchi, Y.: Global Dynamical Properties of Lotka-Volterra Systems. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  26. Takeuchi, Y., Oshime, Y., Matsuda, H.: Persistence and periodic orbits of a three-competitor model with refuges. Math. Biosci. 108(1), 105–125 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuang, Y.: Delay Differential Equation with Application in Population Dynamics, pp. 67–70. Academic Press, New York (1987)

    Google Scholar 

  28. Leung, A.W.: Optimal harvesting-coefficient control of stead-state prey-predator diffusive Volterra-Lotka system. Appl. Math. Optim. 31, 219–241 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Alvarez, H.R., Shepp, L.A.: Optimal harvesting of stochastically fluctuating populations. J. Math. Biol. 37, 155–177 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tang, S.Y., Chen, L.S.: The effect of seasonal harvesting on stage-structured population models. J. Math. Biol. 48, 357–374 (2003)

    Article  MathSciNet  Google Scholar 

  31. Zhao, Z., Chen, L.S.: The effect of pulsed harvesting policy on the inshore-offshore fishery model with impulsive diffusion. Nonlinear Dyn. 63, 521–535 (2011)

    Article  MathSciNet  Google Scholar 

  32. Jiao, J.J., Ye, K.L., Chen, L.S.: Dynamical analysis of a five-dimensioned chemostat model with impulsive diffusion and pulse input environmental toxicant. Chaos Solitons Fractals 44, 17–27 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jury, E.L.: Inners and Stability of Dynamics System. Wiley, New York (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Jiao.

Additional information

Supported by National Natural Science Foundation of China (10961008), the Science Technology Foundation of Guizhou Education Department (2008038), and the Science Technology Foundation of Guizhou (2010J2130).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, J., Cai, S. & Chen, L. Dynamics of the genic mutational rate on a population system with birth pulse and impulsive input toxins in polluted environment. J. Appl. Math. Comput. 40, 445–457 (2012). https://doi.org/10.1007/s12190-012-0577-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-012-0577-5

Keywords

Mathematics Subject Classification

Navigation