Elsevier

Annals of Physics

Volume 128, Issue 1, August 1980, Pages 29-130
Annals of Physics

Complex and quaternionic analyticity in chiral and gauge theories, I

https://doi.org/10.1016/0003-4916(80)90056-1Get rights and content

Abstract

A comparative and systematic study is made of 2-dimensional CP(n) σ-models and new 4-dimensional HP(n) σ-models and their respective embedded U(1) and Sp(1) holonomic gauge field structures. The central theme is complex versus quaternionic analyticity. A unified formulation is achieved by way of Cartan's method of moving frames adapted to the hypercomplex geometries of the harmonic symmetric spaces CP(n) ≈ SU(n + 1)SU(n) × U(1) and HP(n) ≈ Sp(n + 1)Sp(n) × Sp(1) respectively. Elements of complex Kähler manifolds are applied to a detailed analysis of the CP(n) σ-model and its instanton sector. Generalization to any Kählerian σ-model is manifest. On the basis of Cauchy-Riemann analyticity, Kählerian models are shown to have an infinite number of local continuity equations. In a parallel manner, new 4-dimensional conformally invariant HP(n) σ-models are constructed. Focus is on the latter's hidden local gauge invariance in their holonomy group Sp(n) × Sp(1) which allows a natural embedding of the Sp(1) ≈ SU(2) pure Yang-Mills theory. The associated quaternionic structure is discussed in light of both quaternionic quantum mechanics and Kählerian geometry. In this chiral setting, the SU(2) Yang-Mills duality equations are cast into quaternionic Cauchy-Riemann equations over S4HP(1), the conformal spacetime. In analogy to the CP(n) case, their rational solutions are the most general (8n − 3) parameter instantons where the associated algebraic nonlinear equations of the type of Atiyah, Drinfeld, Hitchin, and Manin are now expressed in a new conformally invariant form. Geometrically, the SU(2) instantons solve the Frenet-Serret equations for quaternionic holomorphic curves; they are conformal maps from HP(1) into HP(n) with n their second Chern index. Fueter's quaternionic analysis is presented, then applied: Fueter functions are particularly suited for the solutions of 't Hooft, of Jackiw, Nohl and Rebbi, and of Witten and Peng, as well as the self-dual finite action per unit time solution of Bogomol'nyi, Prasad and Sommerfield. Generalizing the latter, a new solution with unit Chern index and finite action per unit spacetime cell is found. It is expressed in terms of the quaternionic fourfold quasi-periodic Weierstrass Zeta function. Finally the essence of our method is revealed in terms of universal connections over Stiefel bundles; generalization to real, complex and quaternionic classifying Grassmanian σ-models with their embedded SO(m), SU(m) and Sp(m) gauge fields is outlined in terms of gauge invariant projector valued chiral fields. Other outstanding problems are briefly discussed.

References (132)

  • R. Jackiw

    Rev. Mod. Phys.

    (1977)
    R. Jackiw et al.A. Jaffe
  • J. B. Kogut, “An Introduction to Lattice Gauge Theory and Spin Systems,”...
  • K. Pohlmeyer

    Comm. Math. Phys.

    (1976)
    M. Lüscher et al.

    Nucl. Phys. B

    (1978)
    A.L. Zamolodchikov

    Dubna Preprint E2-11485

    (1978)
    I. Ya Aref'eva, P. P. Kulish, E. R. Nissimov, and S. J. Pacheva, LOMI Preprint...
  • Z. Zamolodchikov et al.

    ITEP-35

    (1978)
  • H. Eichenherr

    Nucl. Phys. B

    (1978)
  • V.L. Golo et al.

    Lett. Math. Phys.

    (1978)
  • A.A. Belavin et al.

    JETP Lett.

    (1975)
    A.A. Belavin et al.

    Pisma ZhETF

    (1975)
  • C. Misner

    Phys. Rev. D

    (1978)
  • V.E. Zakharov et al.

    Pisma ZhETF

    (1978)
    V.E. Zakharov et al.

    ZhETF

    (1978)
    V. A. Belinskii and V. E. Zakharov, Landau Institute Preprint,...
  • A. Tomimatsu et al.

    Phys. Rev. Lett.

    (1972)
    A. Tomimatsu et al.

    Progr. Theor. Phys.

    (1973)
    M. Hirayama et al.

    Phys. Lett. A

    (1978)
  • R.A. Matner et al.

    Phys. Rev.

    (1967)
    F.J. Ernst

    Phys. Rev.

    (1968)
  • A.A. Migdal

    Sov. Phys. JETP

    (1975)
  • A.M. Polyakov

    Phys. Lett. B

    (1977)
  • A. D'Adda, M. Lüscher, and P. DiVecchia, Copenhagen Preprint...
  • G. Lazarides, Desy Preprint...
  • D. Gross

    Nucl. Phys. B

    (1978)
    M. F. Atiyah, Oxford Preprint...
  • R. Fueter

    Comm. Math. Helv.

    (1931)
    R. Fueter

    Comm. Math. Helv.

    (1934)
    R. Fueter

    Comm. Math. Helv.

    (1935)
    R. Fueter

    Comm. Math. Helv.

    (1937)
    C. Moisil

    Bull. Sci. Math.

    (1931)
  • F. Gürsey, in Ref. [12, p....
  • M.F. Atiyah et al.

    Phys. Lett. A

    (1978)
    V.G. Drinfeld et al.

    Comm. Math. Phys.

    (1978)
    N. Christ et al.

    Phys. Rev. D

    (1978)
    E. Corrigan et al.

    Nucl. Phys. B

    (1978)
  • E. Witten, Harvard Preprint. See, however, R. J. Cant and A. C. Davis,...A. Jevicki, IAS-Preprint, June...
  • N.K. Pak et al.

    Ann Phys.

    (1979)
    A. Luther, Nordita Preprint,...A. Luther

    Phys. Rep. C

    (1979)
    C. Sommerfield, private communication and to be...
  • P. Griffiths

    Duke Math. J.

    (1974)
  • Shiing Shen Chern
  • Shiing Shen Chern et al.

    Amer. J. Math.

    (1975)
  • J. Eels et al.

    Amer. J. Math.

    (1964)
  • F. Gürsey, M. Snyder, and H. C. Tze, to be...
  • R. Jackiw et al.

    Phys. Rev. D

    (1977)
  • E. Witten

    Phys. Rev. Lett.

    (1977)
  • Chia Kwei Peng

    Sci. Sinica

    (1977)
  • M.K. Prasad et al.

    Phys. Rev. Lett.

    (1975)
    B. Bogomol'nyi

    Sov. J. Nucl. Phys.

    (1976)
  • R. Fueter

    Monatsh. Math. Phys.

    (1939)
  • Shiing Shen Chern

    Complex Manifolds Without Potential Theory

    (1967)
    J. Morrow et al.

    Complex Manifolds

    (1971)
  • E.J. Flaherty

    Hermitian and Kählerian Geometry in Relativity

  • A.M. Perelomov

    Comm. Math. Phys.

    (1978)
  • E. Kähler

    Hamb. Abh.

    (1933)
    A. Weil, “Introduction à l'étude des vari'etés kähleriennes,” Actualités Sci. Indust. No. 1267, Hermann,...
  • R. Moufang

    Math. Ann.

    (1935)
  • N.E. Steenrod

    Topology of Fibre Bundles

    (1951)
  • S. Helgason

    Differential Geometry and Symmetric Spaces

    (1962)
  • M. Born

    Ann. Inst. H. Poincaré

    (1937)
  • M.F. Atiyah

    Comm. Pure Appl. Math.

    (1967)
  • Cited by (95)

    • Hadamard transforms and analysis on Cayley–Dickson algebras

      2024, Journal of Mathematical Analysis and Applications
    • Evolution of twofold degenerate two-level system. Geometrical effects

      1999, Journal of Physics A: Mathematical and General
    View all citing articles on Scopus

    Research supported in part by the U. S. Department of Energy under Contract EY-76-C-02-3075. Yale Preprint YTP79-02.

    View full text