Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T14:28:41.895Z Has data issue: false hasContentIssue false

Characterisation of the sub-Riemannian isometry groups of the H-type groups

Published online by Cambridge University Press:  17 April 2009

Kang-Hai Tan
Affiliation:
Department of Applied Mathematics, Science School Nanjing University of Science and Technology, 210094, Nanjing, Peoples Republic China, e-mail: tankanghai2000@yahoo.com.cn, yangxp@mail.njust.edu.cn
Xiao-Ping Yang
Affiliation:
Department of Applied Mathematics, Science School Nanjing University of Science and Technology, 210094, Nanjing, Peoples Republic China, e-mail: tankanghai2000@yahoo.com.cn, yangxp@mail.njust.edu.cn
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a H-type group G, we first give explicit equations for its shortest sub-Riemannian geodesics. We use properties of sub-Riemannian geodesics in G to characterise the isometry group ISO(G) with respect to the Carnot-Carathéodory metric. It turns out that ISO(G) coincides with the isometry group with respect to the standard Riemannian metric of G.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Aebischer, B., Borer, M., Kälin, M., Leuenberger, C. and Reimann, H.M., Symplectic geometry, Progress in Mathematics 124 (Birkhäuser, Basel, 1992).Google Scholar
[2]Ambrosio, L. and Rigot, S., ‘Optimal mass transportation in the Heisenberg group’, J. Funct. Anal. (to appear).Google Scholar
[3]Beals, R., Gaveau, B. and Greiner, P.C., ‘Hamilton-Jacobi theory and heat kernel on Heisenberg groups’, J. Math. Pures Appl. 79 (2000), 633689.CrossRefGoogle Scholar
[4]Bellaíche, A., The tangent spaces in sub-Riemannian geometry, Progress in Mathematics 144 (Birkhäuser, Basel, 1996).CrossRefGoogle Scholar
[5]Berndt, J., Tricerri, F. and Vanhecke, L., Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Lecture Notes in Math. 1598 (Springer-Verlag, Berlin, Heidelberg, New York 1994).Google Scholar
[6]Chow, W.L., ‘über Systeme non linearen partiellen Differentialgleichungen erster Ordung’, Math. Ann. 117 (1939), 98105.CrossRefGoogle Scholar
[7]Folland, G.B. and Stein, E.M., Hardy spaces on homogeneous groups (Princeton Univ. Press, Princeton, N.J., 1982).Google Scholar
[8]Gromov, M., Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics 152 (Birkhäuser, Boston, 1999).Google Scholar
[9]Gromov, M., Carnot-Carathéodory spaces seen from within, Progress in Mathematics 144 (Birkhäuser, Basel, 1996).Google Scholar
[10]Hutchinson, J.E., ‘Fractals and self similarity’, Indiana. Univ. Math. J. 30 (1981), 713747.CrossRefGoogle Scholar
[11]Kaplan, A., ‘Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms’, Trans. Amer. Math. Soc. 258 (1980), 147153.CrossRefGoogle Scholar
[12]Kaplan, A., ‘Riemannian nilmanifolds attached to Clifford modules’, Geom. Dedicata, 11 (1981), 127136.CrossRefGoogle Scholar
[13]Korányi, A., ‘Geometric properties of Heisenberg-type groups’, Adv. in Math. 56 (1985), 2838.CrossRefGoogle Scholar
[14]Korányi, A. and Reimann, H.M., ‘Quasiconformal mappings on the Heisenberg group’, Invent. Math. 80 (1985), 309338.CrossRefGoogle Scholar
[15]Koranyi, A., Geometric aspects of analysis on the Heisenberg group, Topics in modern harmonic analysis, Vol. I, II (Turin/Milan, 1982), 209C258 (Ist. Naz. Alta Mat. Francesco Severi, Rome, 1983).Google Scholar
[16]Korányi, A. and Reimann, H.M., ‘Foundations for the theory of quasiconformal mappings on the Heisenberg group’, Adv. Math. 111 (1985), 187.CrossRefGoogle Scholar
[17]Leonardi, G.P. and Masnou, S., ‘On the isoperimetric problems in the Heisenberg group ℍn’, (preprint 2002) available from http://cvgmt.sns.it.Google Scholar
[18]Leonardi, G.P. and Rigot, S., ‘Isoperimetric sets on Carnot groups’, Houston J. Math. 29 (2003), 609637.Google Scholar
[19]Liu, W.S. and Sussman, H., ‘Shortest paths for sub-Riemannian metrics on rank-two distributions’, Mem. Amer. Math. Soc. 118 (1995).Google Scholar
[20]Monti, R., ‘Some properties of Carnot-Caratheodory balls in the Heisenberg groupAtti. Accad. Naz. Lincei. Cl. Sci. Fis. Mat. Natur. Ren. Lincei (9) Mat. Appl. 11 (2000), 155167.Google Scholar
[21]Montgomery, R., A tour of sub-Riemannian geometry, their geodesics and applications, Mathematical Surveys and Monographs 91 (American Mathematical Society, Providence R.I., 2002).Google Scholar
[22]Pansu, P., ‘Métriques de CC et quasiisométries des espaces symétriques de rang un’, Ann. of Math. 119 (1989), 160.CrossRefGoogle Scholar
[23]Stein, E.M., Harmonic analysis (Princeton University press, Princeton N.J., 1993).Google Scholar
[24]Tan, K.H., ‘Sobolev classes and horizontal energy minimizers between Carnot-Carathéodory spaces’, Commun. Contemp. Math. 6 (2004), 133.CrossRefGoogle Scholar