Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-06T04:13:41.445Z Has data issue: false hasContentIssue false

Iterates of meromorphic functions: I

Published online by Cambridge University Press:  19 September 2008

I. N. Baker
Affiliation:
Mathematics Dept., Imperial College, London SW7 2AX, UK
J. Kotus
Affiliation:
Institute of Mathematics, Technical University of Warsaw, 00–661 Warsaw, Poland
Lü Yinian
Affiliation:
Institute of Mathematics, Academia Sinica, Beijing, China

Abstract

For functions meromorphic in the plane, apart from an exceptional case, the Julia set J is the closure of the set of all preimages of poles. The repelling periodic cycles are dense in J. In contrast with the case of transcendental entire functions, J may be a subset of a straight line and general classes of functions for which this is the case can be determined. J may also lie on a quasicircle through infinity which is not a straight line.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baker, I. N.. Repulsive fix points of entire functions. Math. Z. 104 (1968), 252256.CrossRefGoogle Scholar
[2]Baker, I. N.. Completely invariant domains of entire functions. Math. Essays dedicated to A. J. MacIntyre, ed., Shankar, H., Ohio University Press (1970), pp 3335.Google Scholar
[3]Baker, I. N.. The domains of normality of an entire function. Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), 277283.Google Scholar
[4]Baker, I. N.. Wandering domains for analytic maps of the punctured plane. Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), 191198.Google Scholar
[5]Bhattacharyya, P.. Iteration of analytic functions. PhD thesis, University of London (1969).Google Scholar
[6]Čebotarev, N. G.. Ueber die Realität von Nullstellen ganzer transzendenten Funktionen. Math. Ann. 99 (1928), 660686.Google Scholar
[7]Cowen, C. C. & Pommerenke, Ch.. Inequalities for the angular derivative of an analytic function in the unit disc. J. London Math. Soc. (2) 26 (1982), 271289.CrossRefGoogle Scholar
[8]Devaney, R. L. & Keen, L.. Dynamics of meromorphic maps with polynomial Schwarzian derivative. Ann. Sci. Ecole Norm. Sup. (4) 22 (1989), 5581.Google Scholar
[9]Fatou, P.. Sur les équations fonctionelles. Bull. Soc. Math. France 47 (1919), 161271; 48 (1920), 33–94; 218–314.Google Scholar
[10]Hayman, W. K.. Meromorphic Functions. Oxford University Press (1975).Google Scholar
[11]Keen, L.. Dynamics of holomorphic self maps of ℂ*. Holomorphic Functions and Moduli I. MSRI publications 10, Springer, New York (1988).CrossRefGoogle Scholar
[12]Koenigs, G.. Recherches sur les intégrates de certaines équations. Ann. Sci. Ec. Norm. Sup. (3) Suppl. (1884), 341.Google Scholar
[13]Kotus, J.. Iterated holomorphic maps on the punctured plane. Lect. Notes Math. Syst. & Ec. 287 (1987), 1029; Preprint,Google Scholar
Inst. Math. Pol. Acad. Sci. (1986).Google Scholar
[14]Lehto, O.. Univalent Functions and Teichmüller Spaces. Springer, New York (1987).CrossRefGoogle Scholar
[15]Levin, B. Ya.. Distribution of Zeros of Entire Functions (Russian original Moscow 1956). English translation.Google Scholar
Translation of Mathematical Monographs 5, American Mathematical Society, Providence (1964).Google Scholar
[16]Mañé, R., Sad, P. & Sullivan, D.. On the dynamics of rational maps. Ann. Sci. Ec. Norm. Sup. 16 (1983), 193217.CrossRefGoogle Scholar
[17]Nevanlinna, R.. Analytic Functions. Springer, Berlin (1970).Google Scholar
[18]Rådström, H.. On the iteration of analytic functions. Math. Scand. 1 (1953), 8592.CrossRefGoogle Scholar