Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T08:41:47.132Z Has data issue: false hasContentIssue false

Caractérisation des flots d' Anosov en dimension 3 par leurs feuilletages faibles

Published online by Cambridge University Press:  19 September 2008

Thierry Barbot
Affiliation:
Laboratoire de Topologie URA 755 du CNRS, Université de Bourgogne, BP 138, 21004 Dijon, France

Abstract

We consider Anosov flows on closed 3-manifolds. We show that if such a flow admits a weak foliation whose lifting in the universal covering is a product foliation, thenit is characterized up to topological equivalence by its weak stable foliation up to topological conjugacy. As a corollary we obtain that, up to topological equivalence and finite coverings, suspensions and geodesic flows are the unique Anosov flows on closed 3-manifolds whose weak stable foliations are transversely projective.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Anosov, D. V.. Geodesic flows on closed riemannian manifolds with negative curvature. Proc. Steklov Insl. Math. (AMS Trans.) (1969).Google Scholar
[2]Arnold, V. I. et Avez, A.. Ergodic Problems of Classical Mechanics. Benjamin: New York, 1968. pp. 1751.Google Scholar
[3]Barbot, T.. Géométrie transverse des flots d' Anosov. Thèse. 1992.Google Scholar
[4]Bonatti, C. et Langevin, R.. Un exemple de flot d' Anosov transitif transverse à un tore et non conjugué à une suspension. Prépublication. Université de Bourgogne, 1992.Google Scholar
[5]Bowen, R.. On Axiom A Diffeomorphisms. Amer. Math. Soc: Providence, 35. 1970.Google Scholar
[6]Brunella, M.. On the topological equivalence between Anosov flows on three-manifolds. Comment. Math. Helv. 67 (1992), 459–170.CrossRefGoogle Scholar
[7]Brunella, M.. Communication personnelle.Google Scholar
[8]Fenley, S. R.. Anosov flows in 3-manifolds. Ann. Math. 139 (1994), 79115.CrossRefGoogle Scholar
[9]Franks, J.. Anosov diffeomorphisms. Global Analysis, Proc. Symp. Pure Math., AMS. XIV (1970), 6193.CrossRefGoogle Scholar
[10]Franks, J. et Williams, R.. Anomalous Anosov flows. Global Theory of Dynamical Systems. Springer Lecture Notes in Mathematics 819. Springer: New York, 1980.Google Scholar
[11]Fried, D.. Transitive Anosov flows and pseudo-Anosov maps. Topology 22 (1983), 299304.CrossRefGoogle Scholar
[12]Ghys, E.. Flots d' Anosov sur les 3-variétés fibrées en cercles. Ergod. Th. & Dynam. Sys. 4 (1984), 6780.CrossRefGoogle Scholar
[13]Ghys, E.. Déformations de flots d' Anosov et de groupes Fuchsiens. Ann. Inst. Fourier 42(1–2) (1992), 209247.CrossRefGoogle Scholar
[14]Ghys, E.. Rigidité différentiable des groupes Fuchsiens. Prépublication. ENS Lyon, 1992.Google Scholar
[15]Ghys, E. et Sergiescu, V.. Stabilité et conjugaison différentiable pour certains feuilletages. Topology 19 (1980), 179197.CrossRefGoogle Scholar
[16]Goodman, S.. Dehn Surgery on Anosov Flows. Springer Lecture Notes in Mathematics 1007. Springer: New York, 1983.Google Scholar
[17]Gromov, M.. Three remarks on geodesic dynamics and fundamental group. Texte non publié, S.U.N.Y., vers 1977.Google Scholar
[18]Haefliger, A.. Groupoïdes d'holonomie et classifiants. Astérisque 116 (1984), 7097.Google Scholar
[19]Handel, M. et Thurston, W.. Anosov flows on new 3-manifolds. Inv. Math. 59 (1980), 95103.CrossRefGoogle Scholar
[20]Hirsch, M. et Pugh, C.. Stable manifolds and hyperbolic sets. Proc. Symp. Pure Math., Am. Math. Soc. XIV (1970).CrossRefGoogle Scholar
[21]Otal, J. P.. Le spectre marqué des longueurs des surfaces à courbure négative. Ann. Math. 131 (1990), 151162.CrossRefGoogle Scholar
[22]Palmeira, C. F. B.. Open manifolds foliated by planes. Ann. Math. 107 (1978), 109131.CrossRefGoogle Scholar
[23]Plante, J. F.. Anosov flows, transversely affine foliations, and a conjecture of Verjovsky. J. London Math. Soc. 23(2) (1981), 359362.CrossRefGoogle Scholar
[24]Plante, J. F.. Anosov flows. Amer. J. Math. 94 (1972), 729754.CrossRefGoogle Scholar
[25]Pugh, C. et Shub, M.. The Ω-stability theorem for flows. Invent. Math. 11 (1970), 150158.CrossRefGoogle Scholar
[26]Reeb, G.. Les espaces localement numériques non séparés et leurs application à un problàme classique. Colloque de Topologie de Strasbourg, 1955, Proceedings.Google Scholar
[27]Solodov, V. V.. The universal cover of Anosov flows. Preprint. 1991.Google Scholar
[28]Tomter, P.. Anosov flows on infra-homogeneous spaces. Global Analysis, Proc. Symp. Pure Math., AMS XIV (1970), 299327.CrossRefGoogle Scholar
[29]Verjovsky, A.. Codimension one Anosov flows. Bol. Soc. Mat. Mexicana 19 (1974), 4977.Google Scholar