Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-06T11:12:01.526Z Has data issue: false hasContentIssue false

Backward continued fractions, Hecke groups and invariant measures for transformations of the interval

Published online by Cambridge University Press:  14 October 2010

Karlheinz Gröchenig
Affiliation:
Department of Mathematics U-9, The University of Connecticut, Storrs, CT 06269-3009, USA, (e-mail: groch@math.uconn.edu, haas@math.uconn.edu)
Andrew Haas
Affiliation:
Department of Mathematics U-9, The University of Connecticut, Storrs, CT 06269-3009, USA, (e-mail: groch@math.uconn.edu, haas@math.uconn.edu)

Abstract

We develop a new type of backward continued fractions that can be associated to each Hecke-type group. We study its symbolic dynamics, and the corresponding interval maps and their invariant measures. These measures are infinite if and only if the corresponding groups are discrete. For the discrete Hecke groups the invariant measure is computed explicitly by studying the geodesic flow on the associated Riemann surface.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Adler, R. L.. Continued fractions and Bernoulli trials. Ergodic Theory, a Seminar. Eds Moser, J., Phillips, E. and Varadhan, S.. Courant Institute Notes, New York, 1975, pp 111120.Google Scholar
[2] Adler, R. L.. Geodesic flows, interval maps and symbolic dynamics. Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces. Eds Bedford, T., Keane, M. and Series, C.. Oxford University Press, 1991.Google Scholar
[3] Adler, R. L. and Flatto, L.. Cross-section maps for geodesic flows. Ergodic Theory and Dynamical Systems (Progress in Mathematics 2). Ed. Katok, A.. Birkhauser, Boston, 1980.Google Scholar
[4] Adler, R. L. and Flatto, L.. The backward continued fraction map and the geodesic flow. Ergod. Th. & Dynam. Sys. 4 (1984), 487492.Google Scholar
[5] Adler, R. L. and Flatto, L.. Geodesic flows, interval maps, and symbolic dynamics. Bull. Amer. Math. Soc. 25 (1991), 229334.Google Scholar
[6] Ambrose, W.. Representation of ergodic flows. Ann. Math. 42 (1941), 723739.Google Scholar
[7] Artin, E.. Ein mechanisches System mit quasi-ergodischen Bahnen. Collected Papers. Addison-Wesley, Reading, Ma, 1965, pp. 499501.Google Scholar
[8] Billingsley, C.. Ergodic Theory and Information. Wiley, 1965.Google Scholar
[9] Bowen, R. and Series, C.. Markov maps associated to Fuchsian groups. Inst. Hautes Etudes Sci., Publ. Math. 50 (1979), 153170.Google Scholar
[10] Fischer, R.. Ergodische Theorie von Ziffernentwicklungen in Wahrscheinlichkeitsräumen. Math. Z. 128 (1972), 217230.Google Scholar
[11] Cornfeld, I. P., Fomin, S. V. and Sinai, Ya. G.. Ergodic Theory. Springer, 1982.Google Scholar
[12] Goodman, F., Harpe, P. de la and Jones, V.. Coxeter Groups and Towers of Algebras (Math. Sciences Research Inst. Publ. 14) Springer, New York, 1989.Google Scholar
[13] Grochenig, K. and Haas, A.. Backward continued fractions and their invariant measures. Canad. Math. Bull. 39 (1996), 186198.Google Scholar
[14] Haas, A.. Diophantine approximation on hyperbolic Riemann surfaces. Ada Math. 156 (1986), 3382.Google Scholar
[15] Haas, A. and Series, C.. The Hurwitz constant and diophantine approximation on Hecke groups. J. London Math. Soc. 34 (1986), 219234.Google Scholar
[16] Magnus, W.. Two generator subgroups of PSL(2, C). Nachr. Akad. Wiss. Giittingen, II, Math. Phys. Kl. 7 (1975), 8194.Google Scholar
[17] Maskit, B.. Kleinian groups. Grundlehren der mathematischen Wissenschaften. Springer, 1988.Google Scholar
[18] Nakada, H.. Metrical theory for a class of continued fraction transformations and their natural extensions. Tokyo J. Math. 4 (1981), 399426.Google Scholar
[19] Parry, W.. Entropy and Generators in Ergodic Theory. Benjamin, New York, Amsterdam, 1969.Google Scholar
[20] Rényi, A.. Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungary 8 (1957), 477493.Google Scholar
[21] Rényi, A.. Valòs szàmok eloallitasara szolgald algoritmusokrol. M. T. A. Mat. is Fiz. Oszt. KZl. 7 (1957), 265293.Google Scholar
[22] Rieger, G. J.. Mischung und Ergodizitat bei Kettenbriichen nach nachsten Ganzen. J. Reine Angew. Math. 310 (1979), 171181.Google Scholar
[23] Rosen, D.. A class of continued fractions associated with certain properly discontinuous groups. Duke Math. J. 21 (1954), 549563.Google Scholar
[24] Rohlin, V. A.. Exact endomorphisms of a Lebesgue space. A. M. S. Transl. 39 (1964), 137.Google Scholar
[25] Rudolfer, S. M.. Ergodic properties of linear fractional transformations mod one. Proc. London Math. Soc. 23 (1971), 515531.Google Scholar
[26] Rychlik, M.. Bounded variation and invariant measures. Studia Math. 76 (1983), 6980.CrossRefGoogle Scholar
[27] Schmidt, T. A.. Remarks on the Rosen λ-continued fractions. The Markoff Spectrum, Diophantine Analysis, and Analytic Number Theory. Eds Pollington, A. and Moran, W.. Dekker, 1993.Google Scholar
[28] Series, C.. Symbolic dynamics for geodesic flows. Acta Math. 146 (1981), 103128.Google Scholar
[29] Series, C.. The modular group and continued fractions. J. London Math. Soc. 31 (1985), 6980.Google Scholar
[30] Thaler, M.. Transformations on [0, 1] with infinite invariant measure. Israel J. Math. 46 (1983), 6796.Google Scholar