Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T11:12:56.828Z Has data issue: false hasContentIssue false

Sub-actions for Anosov flows

Published online by Cambridge University Press:  02 February 2005

A. O. LOPES
Affiliation:
Instituto de Matemática, UFRGS, Porto Alegre 91501-970, Brazil (e-mail: alopes@mat.ufrgs.br)
Ph. THIEULLEN
Affiliation:
Département de Mathématiques, Université Paris-Sud, 91405 Orsay cedex, France (e-mail: philippe.thieullen@math.u-bordeaux.fr)

Abstract

Let $(M,\{\phi^t\})$ be a smooth (not necessarily transitive) Anosov flow without fixed points generated by a vector field $X(x)=(d/dt)|_{t=0}\phi^t(x)$ on a compact manifold M. Let $A:M\rightarrow\mathbb{R}$ be a globally Hölder function defined on M. Assume that $\int_0^T A\circ\phi^t(x)\,dt\geq0$ for any periodic orbit $\{\phi^t(x)\}_{t=0}^{t=T}$ of period T. Then there exists a Hölder function $V:M\rightarrow \mathbb{R}$, called a sub-action, smooth in the flow direction, such that

\[A(x)\geq L_XV(x),\quad\text{for all }x\in M\]

(where $L_XV=(d/dt)|_{t=0}V\circ\phi^t(x)$ denotes the Lie derivative of V). If A is $\mathcal{C}^r$ then LXV is $\mathcal{C}^r$ on any local center-stable manifold.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)