Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-17T12:44:12.059Z Has data issue: false hasContentIssue false

A direct proof of the tail variational principle and its extension to maps

Published online by Cambridge University Press:  01 April 2009

DAVID BURGUET*
Affiliation:
CMLS - CNRS UMR 7640, École polytechnique, 91128 Palaiseau Cedex, France (email: burguet@math.polytechnique.fr)

Abstract

Downarowicz [Entropy structure. J. Anal.96 (2005), 57–116] stated a variational principle for the tail entropy for invertible continuous dynamical systems of a compact metric space. We give here an elementary proof of this variational principle. Furthermore, we extend the result to the non-invertible case.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Boyle, M. and Downarowicz, T.. The entropy theory of symbolic extension. Invent. Math. 156(1) (2004), 119161.CrossRefGoogle Scholar
[2]Burguet, D.. Entropy in differentiable dynamical sytems. Thesis in preparation.Google Scholar
[3]Buzzi, J.. Intrinsic ergodicity for smooth interval maps. Israel J. Math. 100 (1997), 125161.CrossRefGoogle Scholar
[4]Downarowicz, T.. Entropy structure. J. Anal. 96 (2005), 57116.Google Scholar
[5]Downarowicz, T. and Serafin, J.. Fiber entropy and conditional variational principles in compact non-metrizable spaces. Fund. Math. 172 (2002), 217247.CrossRefGoogle Scholar
[6]Katok, A.. Lyapounov exponents, entropy and periodic orbits for diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 51 (1980), 137173.CrossRefGoogle Scholar
[7]Goodman, T. N. T.. Relating topological and measure entropy. Bull. London Math. Soc. 3 (1971), 176180.CrossRefGoogle Scholar
[8]Goodwyn, L. W.. Topological entropy bounds measure-theoretic entropy. Proc. Amer. Math. Soc. 23(3) (1969), 679688.CrossRefGoogle Scholar
[9]Ledrappier, F.. A Variational Principle for the Topological Conditional Entropy (Lecture Notes in Mathematics, 729). Springer, Berlin, 1979, pp. 7888.Google Scholar
[10]Ledrappier, F. and Walters, P.. A relativised variational principle for continuous transformations. J. London Math. Soc. 16 (1977), 568576.CrossRefGoogle Scholar
[11]Lindenstrauss, E.. Mean dimension, small entropy factors and an embedding theorem. Publ. Math. Inst. Hautes Études Sci. 89 (1999), 227262.CrossRefGoogle Scholar
[12]Misiurewicz, M.. Diffeomorphism without any measure with maximal entropy. Bull. Acad. Pol. Sci. 10 (1973), 903910.Google Scholar
[13]Misiurewicz, M.. A short proof of the variational principle for ℤd actions. Asterisque 40 (1976), 147158.Google Scholar
[14]Misiurewicz, M.. Topological conditional entropy. Studia Math. 55 (1976), 175200.CrossRefGoogle Scholar
[15]Newhouse, S.. Continuity properties of entropy. Ann. of Math. (2) 129 (1989), 215235.CrossRefGoogle Scholar
[16]Walters, P.. An Introduction to Ergodic Theory. Springer, New York, 1982.CrossRefGoogle Scholar
[17]Yomdin, Y.. Volume growth and entropy. Israel J. Math. 57 (1987), 285300.CrossRefGoogle Scholar