Skip to main content
Log in

Operator Ergodic Theorems for Actions of Free Semigroups and Groups

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

New ergodic theorems are obtained for measure-preserving actions of free semigroups and groups. These theorems are derived from ergodic theorems for Markov operators. This approach also allows one to obtain ergodic theorems for some classes of Markov semigroups. Results of the paper generalize classical ergodic theorems of Kakutani, Oseledets, and Guivarc'h, and recent ergodic theorems of Grigorchuk, Nevo, and Nevo and Stein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gromov, “Hyperbolic groups,” In: Essays in Group Theory (Gersten S. M., ed.), M.S.R.I. Publ., Vol. 8, Springer-Verlag, 1987, pp. 75-263.

  2. V. I. Oseledets, “Markovc hains, skew-products and ergodic theorems for ‘general’ dynamical systems,” Teor. Veroyatn. Primenen., 10, No. 3, 551-557 (1965).

    Google Scholar 

  3. S. Kakutani, “Random ergodic theorems and Markoff processes with a stable distribution,” In: Proc. 2nd Berkeley Symposium Math. Stat. and Prob., 1951, pp. 247-261.

  4. A. M. Vershik, “Dynamical theory of growth in groups: entropy, boundaries, examples,” Usp. Mat. Nauk, 55, No. 4, 59-128 (2000).

    Google Scholar 

  5. A. M. Vershik, S. Nechaev, and R. Bikbov, Statistical Properties of Braid Groups in Locally Free Approximation, Preprint IHES/M/99/45, June 1999.

  6. A. M. Vershik, “Numerical characteristics of groups and the relations between them,” Zap. Nauchn. Sem. POMI, 256, 5-18 (1999).

    Google Scholar 

  7. R. I. Grigorchuk, “Individual ergodic theorem for actions of free groups,” In: Proceedings of the Tambov Workshop in the Theory of Functions, 1986. 251

  8. R. I. Grigorchuk, “Ergodic theorems for actions of a free group and a free semigroup,” Mat. Zametki, 65, No. 5, 779-782 (1999).

    Google Scholar 

  9. V. I. Arnold and A. L. Krylov, “Uniform distribution of points on a sphere and certain ergodic properties of solutions of linear ordinary differential equations in a complex domain,” Dokl. Akad. Nauk SSSR, 148, No. 1, 9-12 (1963).

    Google Scholar 

  10. L. A. Grigorenko, “σ-algebra of symmetric events for a countable Markov chain,” Teor. Veroyatn. Primenen., 24, No. 1, 198-204 (1979).

    Google Scholar 

  11. Z. I. Bezhaeva and V. I. Oseledets, “On the symmetric σ-algebra of a stationary Harris Markovpro cess,” Teor. Veroyatn. Primenen., 41, No. 4, 869-877 (1996).

    Google Scholar 

  12. N. Dunford and J. T. Schwartz, “Convergence almost everywhere of operator averages,” J. Rational Mech. Anal., 5, 129-178 (1956).

    Google Scholar 

  13. E. Hopf, “The general temporally discrete Markoff process,” J. Rational Mech. Anal., 3, 13-45 (1954).

    Google Scholar 

  14. A. N. Kolmogorov, “A local limit theorem for classical Markov chains,” Izv. Akad. Nauk SSSR, Ser. Mat., 13, No. 4, 281-300 (1949); English transl. in Select. Transl. Math. Statist. Probab., Vol. 2, Amer. Math. Soc., 1962, pp. 109-129.

    Google Scholar 

  15. B. M. Gurevich, “The local limit theorem for Markov chains and regularity type conditions,” Teor. Veroyatn. Primenen., 13, No. 1, 183-190 (1968).

    Google Scholar 

  16. A. Nevo, “Harmonic analysis and pointwise ergodic theorems for non-commuting transformations,” J. Amer. Math. Soc., 7, 875-902 (1994).

    Google Scholar 

  17. J. Cannon, “The combinatorial structure of cocompact discrete hyperbolic groups,” Geom. Dedicata, 16, 123-148 (1984).

    Google Scholar 

  18. A. Nevo and E. M. Stein, “A generalization of Birkhoff's pointwise ergodic theorem,” Acta Math., 173, 135-154 (1994).

    Google Scholar 

  19. Y. Guivarc'h, “Généralisation d'un théorème de von Neumann,” C. R. Acad. Sci Paris, 268, 1020-1023 (1969).

    Google Scholar 

  20. E. R. Lorch, “Means of iterated transformations in reflexive vector spaces,” Bull. Amer. Math. Soc., 45, 945-947 (1939).

    Google Scholar 

  21. U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin-New York, 1985.

    Google Scholar 

  22. A. Bufetov, “Ergodic theorems for several maps,” Usp. Mat. Nauk, 54, No. 4, 159-160 (1999).

    Google Scholar 

  23. M. Akcoglu, “A pointwise ergodic theorem in Lp-spaces,” Canad. J. Math., 27, 1075-1082 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bufetov, A.I. Operator Ergodic Theorems for Actions of Free Semigroups and Groups. Functional Analysis and Its Applications 34, 239–251 (2000). https://doi.org/10.1023/A:1004116205980

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004116205980

Keywords

Navigation