Skip to main content
Log in

Existence of Delaunay Pairwise Gibbs Point Process with Superstable Component

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The present stuffy deals with the existence of Delaunay pairwise Gibbs point process with superstable component by using the well-known Preston theorem. In particular, we prove the stability, the lower regularity, and the quasilocality properties of the Delaunay model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Baddeley and J. Møller, Nearest-neighbour Markov point processes and random sets, Int. Statist. Rev. 57:89–121 (1989).

    Google Scholar 

  2. E. Bertin, J.-M. Billiot, and R. Drouilhet, Existence of “Nearest-Neighbour” Gibbs point models, Adv. Appl. Prob. 31(4) (1999). (To appear).

  3. E. Bertin, J.-M. Billiot, and R. Drouilhet, Spatial Delaunay Gibbs point processes, Stochastic Models 15(2) (1999). (To appear).

  4. R. Dobrushin, Gibbsian random field. The general case, Func. Anal. Appl. 3:22–28 (1969).

    Google Scholar 

  5. H.-O. Georgii, Large deviations and the equivalence of ensembles for Gibbsian particle systems with superstable interaction, Probability Theory and Related Fields 99:171–195 (1994).

    Google Scholar 

  6. H.-O. Georgii and O. Häggström, Phase transition in continuum Potts models, Commun. Math. Phys. 181:507–528 (1996).

    Google Scholar 

  7. C. Geyer, Likelihood inference for spatial point processes, in Stochastic Geometry, Likelihood and Computation, O. E. Barndoff-Nielsen, W. S. Kendall, and M. N. M. van Lieshout, eds. (Chapman and Hall, London, 1998) (to appear).

    Google Scholar 

  8. C. Geyer and J. Møller, Simulation procedures and likelihood inference for spatial point processes, Scand. J. Statist. 21:359–373 (1994).

    Google Scholar 

  9. W. Greenberg, Thermodynamics states of classical systems, Commun. Math. Phys. 22:259–268 (1971).

    Google Scholar 

  10. C. Gruber and J. Lebowitz, Equilibrium states for classical systems, Commun. Math. Phys. 41:11–18 (1975).

    Google Scholar 

  11. D. Klein, Convergence of grand canonical Gibbs measures, Commun. Math. Phys. 92:295–308 (1984).

    Google Scholar 

  12. O. Lanford and D. Ruelle, Observables at infinity and states with support range correlations in statistical mechanics, Commun. Math. Phys. 13:194–215 (1969).

    Google Scholar 

  13. J. Møller, Lectures on random Voronoi tessellations, in Lecture Notes in Statistics, Vol. 87 (Springer-Verlag, New York, 1994).

    Google Scholar 

  14. F. Preparata and M. Shamos, Computational Geometry, an Introduction (Springer Verlag, New York, 1988).

    Google Scholar 

  15. C. Preston, Random Fields, Vol. 534 (Springer-Verlag, Berlin/Heidelberg/New York, 1976).

    Google Scholar 

  16. D. Ruelle, Statistical Mechanics (Benjamin, New York/Amsterdam, 1969).

    Google Scholar 

  17. D. Ruelle, Superstable interactions in classical statistical mechanics, Commun. Math. Phys. 18:127–159 (1970).

    Google Scholar 

  18. D. Stoyan, W. Kendall, and J. Mecke, Stochastic Geometry and Its Applications, 2nd ed. (Wiley, Chichester, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertin, E., Billiot, JM. & Drouilhet, R. Existence of Delaunay Pairwise Gibbs Point Process with Superstable Component. Journal of Statistical Physics 95, 719–744 (1999). https://doi.org/10.1023/A:1004551527790

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004551527790

Navigation