Skip to main content
Log in

Let's Baxterise

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We recall the concept of Baxterisation of an R-matrix, or of a monodromy matrix, which corresponds to build, from one point in the R-matrix parameter space, the algebraic variety where the spectral parameter(s) live. We show that the Baxterisation, which amounts to studying the iteration of a birational transformation, is a “win–win” strategy: it enables to discard efficiently the non-integrable situations, focusing directly on the two interesting cases where the algebraic varieties are of the so-called “general type” (finite order iteration) or are Abelian varieties (infinite order iteration). We emphasize the heuristic example of the sixteen vertex model and provide a complete description of the finite order iterations situations for the Baxter model. We show that the Baxterisation procedure can be introduced in much larger frameworks where the existence of some underlying Yang–Baxter structure is not used: we Baxterise L-operators, local quantum Lax matrices, and quantum Hamiltonians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Lochak and J. M. Maillard, J. Math. Phys. 27:593 (1986).

    Google Scholar 

  2. J. M. Maillard, J. Math. Phys. 27:2776 (1986).

    Google Scholar 

  3. E. Bertini, Life and Work of L. Cremona, Proceedings of the London Mathematical Society, Vol. 2, 1, V-XVIII.

  4. M. P. Bellon, J.-M. Maillard, and C.-M. Viallet, Phys. Lett. A 157:343 (1991).

    Google Scholar 

  5. M. P. Bellon, J.-M. Maillard, and C.-M. Viallet, Phys. Lett. B 260:87 (1991).

    Google Scholar 

  6. J.-M. Maillard, and C.-M. Viallet, Phys. Lett. B 381:269 (1996).

    Google Scholar 

  7. G. E. Andrews, R. J. Baxter, and P. J. Forrester, J. Stat. Phys. 35:193 (1984).

    Google Scholar 

  8. C. N. Yang and C. P. Yang, Phys. Rev. 150:321–339 (1966).

    Google Scholar 

  9. C. N. Yang and C. P. Yang, Phys. Rev. 151:258–264 (1966).

    Google Scholar 

  10. M. Takahashi and M. Suzuki, Prog. Theor. Phys. 48:2187–2209 (1972).

    Google Scholar 

  11. D. Hansel and J. M. Maillard, Phys. Lett. A 133:11 (1988).

    Google Scholar 

  12. A. B. Zamolodchikov, Comm. Math. Phys. 79:489 (1981).

    Google Scholar 

  13. R. J. Baxter, Comm. Math. Phys. 88:185 (1983).

    Google Scholar 

  14. R. J. Baxter, Physica D 18:321 (1986).

    Google Scholar 

  15. S. Boukraa, J.-M. Maillard, and G. Rollet, J. Stat. Phys. 78:1195 (1995).

    Google Scholar 

  16. S. Boukraa and J.-M. Maillard, Physica A 220:403–470 (1995).

    Google Scholar 

  17. M. P. Bellon, J.-M. Maillard, and C.-M. Viallet, Phys. Rev. Lett. 67:1373 (1991).

    Google Scholar 

  18. S. Boukraa, J.-M. Maillard, and G. Rollet, Int. J. Mod. Phys. B 8:2157 (1994).

    Google Scholar 

  19. S. Boukraa, J.-M. Maillard, and G. Rollet, Physica A 208:115 (1994).

    Google Scholar 

  20. S. Boukraa, J.-M. Maillard, and G. Rollet, Int. J. Mod. Phys. B 8:137 (1994).

    Google Scholar 

  21. Y. G. Stroganov, Phys. Lett. A 74:116 (1979).

    Google Scholar 

  22. R. J. Baxter, J. Stat. Phys. 28:1 (1982).

    Google Scholar 

  23. J. Hietarinta, J. Phys. A 26:L9 (1993).

    Google Scholar 

  24. R. J. Baxter, J. H. H. Perk, and H. Au-Yang, Phys. Lett. A 128:138 (1988).

    Google Scholar 

  25. N. Abarenkova, J.-C. Anglès d'Auriac, S. Boukraa, S. Hassani, and J.-M. Maillard, Physica A 264:264 (1999).

    Google Scholar 

  26. N. Abarenkova, J.-C. Anglès d'Auriac, S. Boukraa, S. Hassani, and J.-M. Maillard, Phys. Lett. A 262:44 (1999).

    Google Scholar 

  27. N. Abarenkova, J.-C. Anglès d'Auriac, S. Boukraa, and J.-M. Maillard, Physica D 130:27 (1999).

    Google Scholar 

  28. J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Undergraduate Texts in Mathematics (Springer-Verlag, 1992).

  29. J. E. Sacco and F. Y. Wu, J. Phys. A 8(11):1780 (1975).

    Google Scholar 

  30. S. M. Sergeev, V. V. Mangazeev, and Yu. G. Stroganov, The Vertex Formulation of the Bazhanov-Baxter Model (Australian National University, 1995). RSPhysSE Preprint.

  31. I. G. Korepanov, Tetrahedron Equation and the Algebraic Geometry, hep-th/9401976.

  32. J. Hietarinta, J. Phys. A 27:5727 (1994).

    Google Scholar 

  33. E. H. Lieb and F. Y. Wu, Two dimensional ferroelectric models, in Phase Transitions and Critical Phenomena, Vol. 1, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972), pp. 331–490.

    Google Scholar 

  34. M. P. Bellon, J.-M. Maillard, and C.-M. Viallet, Phys. Lett. B 281:315 (1992).

    Google Scholar 

  35. L. D. Faddeev, 40 Years in Mathematical Physics, World Scientific Series in 20th Century Mathematics (1995), Vol. 2.

  36. R. J. Baxter, Ann. Phys. 76:25 (1973).

    Google Scholar 

  37. F. G. Frobenius, Über das Additions-theorem der Thetafunctionen mehrerer variabeln, Journ. für die reine und angewandte Mathematik, Vol. 89 (1880), p. 185.

  38. M. Gaudin, La Fonction d'Onde de Bethe, Collection du C.E.A. Série Scientifique (Masson, Paris, 1983).

    Google Scholar 

  39. A. Zamolodchikov and Al. Zamolodchikov, Phys. Lett. A 91:157 (1982).

    Google Scholar 

  40. R. E. Schrock, Ann. Phys. 120:253 (1979).

    Google Scholar 

  41. F. J. Wegner, Physica A 68:570 (1973).

    Google Scholar 

  42. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (London Academic Press, 1981).

  43. D. Hilbert, Mathem. Ann. 36:473 (1890).

    Google Scholar 

  44. A. Gaaff and J. Hijmans, Physica A 80:149 (1975).

    Google Scholar 

  45. A. Gaaff and J. Hijmans, Physica A 83:301 (1976).

    Google Scholar 

  46. A. Gaaff and J. Hijmans, Physica A 83:317 (1976).

    Google Scholar 

  47. A. Gaaff and J. Hijmans, Physica A 94:192 (1978).

    Google Scholar 

  48. A. Gaaff and J. Hijmans, Physica A 97:244 (1979).

    Google Scholar 

  49. J. Hijmans, Physica A 130:57–87 (1985).

    Google Scholar 

  50. J. Hijmans and H. M. Schram, Physica A 121:479–512 (1983).

    Google Scholar 

  51. J. Hijmans and H. M. Schram, Physica A 125:25 (1984).

    Google Scholar 

  52. H. M. Schram and J. Hijmans, Physica A 125:58 (1984).

    Google Scholar 

  53. J. H. P. Colpa, Physica A 125:425–442 (1984).

    Google Scholar 

  54. S. Boukraa and J.-M. Maillard, Journal de Physique I 3:239 (1993).

    Google Scholar 

  55. R. Z. Bariev, A. Klümper, A. Schadschneider, and J. Zittartz, Zeitschrift für Physik B 96:395 (1995).

    Google Scholar 

  56. F. H. L. Essler and V. E. Korepin, Phys. Rev. B 46:9147 (1992).

    Google Scholar 

  57. R. Z. Bariev, Exact solution of generalized t-J models in one dimension, J. Phys. A 27:3381 (1994).

    Google Scholar 

  58. E. Olmedilla, M. Wadati, and Y. Akutsu, J. Phys. Soc. Japan 56:2298 (1987).

    Google Scholar 

  59. F. H. L. Essler, V. E. Korepin, and K. Shoutens, Phys. Rev. Lett. 68:2960 (1992).

    Google Scholar 

  60. P. W. Kasteleyn, Exactly solvable lattice models, in Proc. of the 1974 Wageningen Summer School: Fundamental Problems in Statistical Mechanics III (North-Holland, Amsterdam, 1974).

    Google Scholar 

  61. H. Meyer, J. C. Anglès d'Auriac, and J.-M. Maillard, Phys. Rev. E 55:5380 (1997).

    Google Scholar 

  62. R. J. Baxter, Ann. Phys. 70:323 (1972).

    Google Scholar 

  63. S. Boukraa, S. Hassani, and J.-M. Maillard, Physica A 240:586 (1997).

    Google Scholar 

  64. P. Schlottmann, Phys. Rev. B 36:5177 (1987).

    Google Scholar 

  65. C. L. Schultz, Phys. Rev. Lett. 46:629 (1981).

    Google Scholar 

  66. J. H. H. Perk and C. L. Schultz, Phys. Lett. A 84:407 (1981).

    Google Scholar 

  67. M. Toda, J. Phys. Soc. Japan 22:431 (1967).

    Google Scholar 

  68. M. Toda, Theory of Nonlinear Lattices, Springer series in Solid State Sciences 20 (1981).

  69. S. V. Manakov, J.E.T.P. 65:1392 (1973).

    Google Scholar 

  70. H. Flashka, Progr. Theor. Phys. 51:703 (1974).

    Google Scholar 

  71. P. P. Kulish and E. K. Sklyanin, Quantum spectral transform method. Recent developments, in Integrable Quantum Field Theories, Lecture Notes in Physics, Vol. 51, pp. 61–119 (1982) (Proceedings Tvärminne, Finland, 1981).

    Google Scholar 

  72. V. B. Kuznetsov, M. Salerno, and E. K. Sklyanin, Quantum Bäcklund Transformation for the Integrable DST Model, solv-int/9908002 Submitted to J. Phys. A.

  73. L. A. Takhtadzhan and L. D. Faddeev, Russian Math. Surveys 34:11–68 (1979).

    Google Scholar 

  74. L. D. Faddeev, Integrable Models in (1 + 1)-dimensional quantum field Theory, Les Houches, Session XXXIX (1982), in Recent advances in Field Theory and Statistical Mechanics, J-B. Zuber and R. Stora, eds. (Elsevier Science Publishers B.V., 1984).

  75. P. Bouwknegt, J. McCarthy, and K. Pilch, Comm. Math. Phys. 131:125 (1990).

    Google Scholar 

  76. M. Ruiz-Altaba, Phys. Lett. B 279:326 (1992).

    Google Scholar 

  77. N. Reshetikhin and F. Smirnov, Comm. Math. Phys. 131:157 (1990).

    Google Scholar 

  78. O. Babelon, P. Cartier, and Y. Kosmann-Schwarzbach, eds., Lectures on Integrable Systems, in memory of Jean-Louis Verdier Proceedings of the CIMPA School World Scientific (1994), ISBN 981–02–1757–9.

  79. G. Felder and C. Wieczerkowski, Comm. Math. Phys. 138:583 (1991).

    Google Scholar 

  80. F. Jaeger, M. Matsumoto, and K. Nomura, Bose-Mesner Algebras Related to Type II Matrices and Spin Models, RIMS preprint (1995).

  81. I. M. Krichever, Funct. Anal. and its Appl. 15:92 (1981).

    Google Scholar 

  82. V. V. Bazhanov and Y. G. Stroganov, Theor. Math. Phys. 62:253–260, 63:519–527, 63:604–611 (1985).

    Google Scholar 

  83. M. Shiroishi and M. Wadati, J. Phys. Soc. Japan. 64:2795 (1995).

    Google Scholar 

  84. H. Meyer, J.-C. Anglès d'Auriac, J.-M. Maillard, and G. Rollet, Physica A 208:223 (1994).

    Google Scholar 

  85. M. T. Jaekel and J. M. Mailland, J. Phys. A 18:1229 (1985).

    Google Scholar 

  86. M. T. Jaekel and J. M. Maillard, J. Phys. A 17:2079 (1984).

    Google Scholar 

  87. V. F. R. Jones, Planar Algebras, I., math/9909027.

  88. D. Hansel, J. M. Maillard, J. Oitmaa, and M. Velgakis, J. Stat. Phys. 48:69 (1987).

    Google Scholar 

  89. J.-M. Mailland and G. Rollet, J. Phys A 27:6963 (1994).

    Google Scholar 

  90. N. Abarenkova, J.-C. Anglès d'Auriac, S. Boukraa, and J.-M. Maillard, The European Physical Journal B 5:647 (1998).

    Google Scholar 

  91. N. Abarenkova, J.-C. Anglès d'Auriac, S. Boukraa, S. Hassani, and J.-M. Mailland, From Yang-Baxter equations to dynamical zeta functions for birational transformations, in Statistical Mechanics at the Eve of the 21st Century. In Honour of J. B. McGuire on the Occasion of His 65th Birthday, M. T. Batchelor and L. T. Wille, eds., Series on Advances in Statistical Mechanics, Vol. 14 (World Scientific, 1999), pp. 436–490.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boukraa, S., Maillard, JM. Let's Baxterise. Journal of Statistical Physics 102, 641–700 (2001). https://doi.org/10.1023/A:1004842717830

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004842717830

Navigation