Skip to main content
Log in

Effect of Cross-Diffusion on Pattern Formation – a Nonlinear Analysis

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

In this paper, we consider a model for the switching behaviour (determination) of a cell proposed by Meinhardt (1982) and observe that this two component system can create a pattern only in the presence of cross-diffusion. We also analyse the global behaviour of this model system by the Bendixson–Dulac criteria and Liapunov functional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Auchmuty, J. F. G. and Nicolis, G.: Bifurcation analysis of nonlinear reaction diffusion equations — I: Evolution equations and the steady-state solutions, Bull. Math. Biol. 37 (1975), 323–365.

    Google Scholar 

  • Auchmuty, J. F. G. and Nicolis, G.: Bifurcation analysis of nonlinear reaction diffusion equations — III: Chemical oscillations, Bull. Math. Biol. 38 (1976), 325–350.

    Google Scholar 

  • Alimirantis, Y. and Papageorgiou, S.: Cross-diffusional effects on chemical and biological pattern formation, J. Theoret. Biol. 151 (1991), 289–311.

    Google Scholar 

  • Babloyants, A. and Hiernaux, J.: Models for cell differentiation and generation of polarity in diffusion governed morphogenetic fields, Bull. Math. Biol. 37 (1975), 637–657.

    Google Scholar 

  • Berding, C. and Haken, H.: Pattern formation in morphogenesis, J. Math. Biol. 14 (1982), 133–151.

    Google Scholar 

  • Birkhoff, G. and Rota, G. C.: Ordinary Differential Equations, Ginn, Boston, 1982, p. 23.

    Google Scholar 

  • Chattopadhyay, J., Tapaswi, P. K. and Mukherjee, D.: Formation of a regular dissipative structure: a bifurcation and nonlinear analysis, Biosystems 26 (1992), 211–222.

    Google Scholar 

  • Chattopadhyay, J. and Tapaswi, P. K.: Order and disorder in biological systems through negative cross-diffusion of mitotic inhibitor — a mathematical model, Math. Comp. Modelling 17 (1993), 105–112.

    Google Scholar 

  • Chattopadhyay, J. and Tapaswi, P. K.: Morphogenetic prepattern during embryonic development — a nonlinear analysis, Appl. Math. Lett. 5 (1992), 19–22.

    Google Scholar 

  • Clark, C. W.: Mathematical Bioeconomics: The Optimal Managment of Renewable Resources, Wiley, New York, 1976.

    Google Scholar 

  • Gierer, A. and Meinhardt, H.: Applications of a theory of biological pattern formation based on lateral inhibition, J. Cell. Sci. 15 (1974), 321–376.

    Google Scholar 

  • Gierer, A. and Meinhardt, H.: A theory of biological pattern formation, Kybernetica 12 (1972), 30–39.

    Google Scholar 

  • Granero, M. I., Porati, A. and Zanacca, D.: Bifurcation analysis of pattern formation in diffusion governed morphogenetic field, J. Math. Biol. 4 (1977), 21–27.

    Google Scholar 

  • Haken, H. and Olbrich, H.: Analytical treatment of pattern formation in the Gierer-Meinhardt model of morphogenesis, J. Math. Biol. 6 (1978), 317–331.

    Google Scholar 

  • Hsu, Sze-Bi, Waltman, P. and Wolkowicz, G. S. K.: Global analysis of a model of plasmid-bearing, plasmid-free competition in a chemostat, J. Math. Biol. 32 (1994), 731–742.

    Google Scholar 

  • Hunding, A. and Sorensen, P. G.: Size adaptation of Turing prepatterns, J. Math. Biol. 26 (1988), 27–39.

    Google Scholar 

  • Huppert, H. E. and Hallworth, M. A.: J. Phys. Chem. 88 (1984), 2902–2905.

    Google Scholar 

  • Jorne, J.: Negative ionic cross-diffusion coefficient in electrolytic solution, J. Theoret. Biol. 55 (1975), 529–532.

    Google Scholar 

  • Lefever, R. and Prigogine, I.: Symmetry breaking instabilities in dissipative system — II, J. Chem. Phys. 48 (1968), 1695–1700.

    Google Scholar 

  • Levin, S. A. and Segel, L. A.: Pattern generation in space and aspect, SIAM Rev. 27 (1985), 45–67.

    Google Scholar 

  • Martinez, H. M.: Morphogenesis and chemical dissipative structures: a computer simulation case study, J. Theoret. Biol. 36 (1972), 479–501.

    Google Scholar 

  • McDougall, T. and Turner, J. S.: Influence of cross diffusion on finger double diffusive convection, Nature 299 (1982), 812–822.

    Google Scholar 

  • Meinhardt, H.: Models of Biological Pattern Formation, Academic Press, London, New York, 1982.

    Google Scholar 

  • Meinhardt, H.: Hierarchical inductions of cell states: a model for segmentation in Drosophila, J. Cell. Sci. Suppl. 4 (1986), 357–381.

    Google Scholar 

  • Murray, J. D.: Lectures on Nonlinear Differential Equation Models in Biology, Oxford University Press, 1977.

  • Murray, J. D.: Mathematical Biology, Springer-Verlag, Heidelberg, 1989.

    Google Scholar 

  • Murray, J. D.: Discussion: Turing's theory of morphogenesis — its influence on modelling biological pattern and form, Bull. Math. Biol. 52 (1990), 119–152.

    Google Scholar 

  • Murray, J. D. and Oster, G. F.: Generation of biological pattern and form, IMA J. Math. Appl. Medic. Biol. 1 (1984), 51–75.

    Google Scholar 

  • Murray, J. D. and Maini, P. K.: A new approach to the generation of pattern and form in embryology, Sci. Prog. Oxford 70 (1986), 539–553.

    Google Scholar 

  • Nakamura, R.: The transport of histidine and methionine in rat brain slices, J. Biochem. 53 (1963), 314–332.

    Google Scholar 

  • Nicolis, G. and Auchmuty, J. F. G.: Dissipative structures, Catastrophes and pattern formation: a bifurcation analysis, Proc. Natl. Acad. Sci., U.S.A. 71 (1974), 2748–2751.

    Google Scholar 

  • Nicolis, G. and Prigogine, I.: Self-Organisation in Nonequilibrium Systems, Wiley, New York, 1977.

    Google Scholar 

  • Oster, G. F., Shubin, N., Murray, J. D. and Alberch, P.: Evolution and morphogenetic rules: the shape of the vertebrate limb in ontogeny and phylogeny, Evolution 45 (1988), 862–884.

    Google Scholar 

  • Othmer, H. C.: Current theories of pattern formation, In S. Levin (ed.) Lectures on Mathematics in Life Sciences 9, Amer. Math. Soc., Providence, 1977, pp. 55–86.

    Google Scholar 

  • Rosen, R.: Dynamical System Theory in Biology, Wiley-Intersciences, New York, 1979.

    Google Scholar 

  • Segel, L. A.: Modelling Dynamic Phenomena in Molecular and Cellular Biology, Cambridge University Press, 1984.

  • Smoller, J.: Shock Waves and Reaction-Diffusion Systems, Springer-Verlag, New York, 1983.

    Google Scholar 

  • Tapaswi, P. K. and Saha, A. K.: Pattern formation and morphogenesis: a reaction diffusion model, Bull. Math. Biol. 48 (1986), 213–228.

    Google Scholar 

  • Turing, A. M.: The chemical basis of morphogenesis, Phil. Trans. R. Soc. London B 237 (1952), 37–72.

    Google Scholar 

  • Wolpert, L.: Positional informations and pattern formation, Phil. Trans. R. Soc. London B 295 (1981), 441–450.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, J., Tapaswi, P.K. Effect of Cross-Diffusion on Pattern Formation – a Nonlinear Analysis. Acta Applicandae Mathematicae 48, 1–12 (1997). https://doi.org/10.1023/A:1005764514684

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005764514684

Keywords

Navigation